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abstract
Energy production is one of the main activities causing environmental
harm and climate change. For this reason, in the recent past, most
government bodies and public and private institutions set ambitious
goals for reduction in energy consumption and increase in energy
efficiency. The buildings sector is one of the main actors in the energy
usage scheme. It is estimated that buildings account for over one
third of global energy consumption, and that they are responsible
for a large amount of greenhouse gas emissions, which have major
effect on climate change. Therefore, many policies and regulations for
buildings energy efficiency have been issued, and many institutions
have defined classes of highly energy efficient buildings.

However, a large difference between design goals and actual energy
performance has been observed in many buildings, especially long
time after construction. One of the main causes for this gap is due to
building faults. Modern buildings have complex engineering designs,
made up of several subsystems, which, in turns, are composed ofmany
components. Several kinds of faults can affect all of these components,
such as sensors faults, mechanical components failures, time wear or
misconfiguration. Faults impact both occupants comfort and energy
consumption, causing often significant energy waste.

Fault detection and diagnostics techniques have been successfully
developed and used in many fields, such as avionics and process
engineering, for many decades, however, their application on build-
ings is relatively recent. Many proposed methods were only tested
on isolated or simulated components, since real data is scarce and
not publicly available. The few available commercial solutions are
still simplistic, and can only detect a small subset of possible faults.
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Abstract

Moreover, while many individual techniques have been proposed,
there are no common and widespread approaches for overall fault
detection and diagnostics.

In this thesis, a top-down approach for fault detection and dia-
gnostics in buildings is proposed, where building systems are stacked
in a hierarchy. In the first step, building data is validated. All build-
ing applications, including fault detection and diagnostics, require
sane and validated data to operate correctly. Afterwards, using the
building’s energy distribution tree, the overall performance of the
building is evaluated, and potential underperforming subsystems are
identified. Once the scope is restricted, specialized methods are used
for fault detection and diagnostics on the specific subsystems.

Ventilation systems are one of the most critical systems in buildings,
and are responsible for a large share of energy consumption. Therefore,
special focus was devoted to them, and they were considered as case
study for three specialized fault detection and diagnostics methods. In
the first, virtual redundancy was introduced inside a ventilation unit
by exploiting physical relations between different measurement. In
the second, consensus among multiple similar components was used
to identify outliers in the air distribution system. Finally, a technical
report of faults impact was prepared through simulating healthy and
faulty conditions using a dynamic energy model of a building.

All techniques developed in this thesis were deployed and tested on
a real building at the University of Southern Denmark. The building,
built in 2015 and used for teaching and office work, is fully equipped
with sensors and meters, and acts as a living lab for the university.
When deployed, the techniques helped identifying faults and anomal-
ous conditions in the building, such as uncalibrated CO2 sensorswhich
lead to reduced indoor air quality, oscillating temperature readings
inside ventilation units, and rooms with anomalous air distribution
patterns.

Finally, in the proposed techniques, allmain classes of fault detection
and diagnostics methods present in literature have been explored, i.e.
rule-based methods, model-based methods and data-driven methods.
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resumé
Energiproduktionen er en af hovedårsagerne til miljø skader og kli-
maforandringer. Af denne grund har de fleste statslige organer og
offentlige og private institutioner, for nyligt, sat nogle ambitiøse mål
for at reducere energiforbruget og forøge energieffektiviteten. Byg-
ningssektoren er en af hovedforbrugerne. Det er estimeret at bygninger
står for over en tredjedel af det globale energiforbrug, og at de er an-
svarlige for en stor del af CO2 udledningen, somhar en stor indvirkning
på klimaforandringerne. Derfor er der blevet indført mange regler og
reguleringer for bygningers energieffektivitet, og flere institutioner
har defineret klasser af energieffektive bygninger.

Der er observeret stor difference imellemdesignmålet og den aktuel-
le energieffektivitet i mange bygninger, specielt lang tid efter konstruk-
tionen af bygningen. En af de mange årsager til denne problematik er
på grund af bygningsfejl. Moderne bygninger er designet komplekst,
og de er lavet af mange forskellige subsystemer, som hver især er
opbygget af mange komponenter. Mange forskellige typer af fejl kan
påvirke alle disse komponenter, såsom sensor fejl, mekanisk kompo-
nentfejl, slid pga. driftstimer eller fejlkonfiguration. Fejl påvirker både
beboernes komfort og deres energiforbrug, hvilket ofte forårsager
betydeligt højere energiforbrug.

Tekniker til fejldetektion og diagnosticering er allerede blevet ud-
viklet til mange forskellige områder, såsom flyelektronik og procestek-
nologi, men deres anvendelse på bygninger er relativ ny. Mange af de
foreslående metoder er kun blevet testet på isolerede eller simulerede
komponenter, da reelle data er mangelfulde og ikke offentligt tilgænge-
lig. De få tilgængelige kommercielle løsninger er stadig simple og kan
kun opdage en delmængde af de mulige opståede fejl. Selvom der er
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Resumé

blevet foreslået mange individuelle metoder, er der ikke en almindelig
og udbredt tilgang til overordnet fejldetektion og diagnostik.

I denne afhandling foreslås en top-down-metode til fejldetektion og
diagnostik i bygninger, hvor bygningssystemer er hierarkisk opdelt.
Somdet første trin valideres bygningsdata. Alle bygningsapplikationer,
herunder fejlregistrering og diagnostik, kræver gangbare og valideret
data for at fungere korrekt. Derefter evalueres bygningens samlede
ydeevne ud fra alle delelementer, og potentielle dårlige resultater af
delsystemer identificeres. Når omfanget er blevet begrænset, anvendes
specialiserede metoder til fejldetektion og diagnostik på de specifikke
delsystemer.

Ventilationssystemer er et af de mest kritiske systemer i bygninger
og er ansvarlige for en stor del af energiforbruget. Derfor blev der
specielt fokuseret på dem, og de blev betragtet som casestudie for tre
specialiserede fejldetekterings- og diagnostik-metoder. I den første
metode blev virtuel redundans indført i en ventilationsenhed ved at
udnytte de fysiske forhold mellem forskellige målinger. I den anden
metode blev der brugt consensus imellem flere lignende komponenter
til at identificere afvigende resultater i luftdistributionssystemet. Til
sidst blev der lavet en teknisk rapport om fejlindvirkningen ved at
simulere funktionsdygtige og defekte forhold, ved brug af en dynamisk
energimodel af en bygning.

Alle teknikker udviklet i denne afhandling blev implementeret og
testet på en virkelig bygning ved Syddansk Universitet. Bygningen
er fra 2015 og bruges til undervisning og kontorarbejde, den er fuldt
udstyret med sensorer og målere, og fungerer som et levende labora-
torium for universitetet. Ved implementering hjalp teknikkerne med
at identificere fejl og uregelmæssige forhold i bygningen, såsom ikke
kalibrerede CO2-sensorer, som medfører reduceret indendørs luftkva-
litet, oscillerende temperaturaflæsninger inde i ventilationsenheder
og rum med uregelmæssige luftfordelingsmønstre.

Til sidst, i de foreslåede teknikker, er der blevet undersøgt alle ho-
vedklasser af fejldetektions- og diagnostik-metoder, som er til stede i
litteraturen, dvs. rule-based, model-based og data-driven metoder.
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Part I

Background
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This part serves as a general introduction to the work carried out
during the Ph. D. project. Chapter 1 introduces the context of this
thesis and presents the motivation, the research questions and the
methodology. The current state of the art of the field is reviewed
in Chapter 2, where its gap is highlighted, and the contribution of
the thesis is presented. Chapter 3 contains a short summary of the
publications included in the thesis. In Chapter 4, the main case-study
building OU44 is presented.
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chapter 1introduction
In this chapter, the field of fault detection and diagnostics (FDD) in
building systems is introduced in the context of energy efficiency plans
and regulations. Afterwards, the objectives and the research questions
of this thesis are defined, and the methodology followed during the
Ph. D. project is described.

1.1 energy efficiency and environmental
impact

In the famous The Stern Review, Stern estimates that the effects of cli-
mate change on human society will be massive [14]. Without taking
any measure to contrast the current trends in global warming, car-
bon emissions, deforestation and other climate change indicators, the
global gross domestic product (GDP) will suffer a yearly loss of at
least 5%, up to a yearly loss of 20% when wider risks and impacts
are taken into consideration. Besides human economy, climate change
will also significantly impact the global environment. The prevalence
of extreme weather has been increasing over the whole world, causing
damage and irreversible effects.

One of the key factors to climate change are carbon emissions. CO2
level in the atmosphere has been relatively steady until the industrial
revolution, when carbon emissions from human machinery made
it rise at an increased pace, as it is shown in Figure 1.1. CO2 in the
atmosphere is themain cause for the greenhouse effect, i.e. the reduced
cooling effect of the planet. Nowadays, CO2 level in the atmosphere
passed over 400 ppm, and it is increasing by 2ppm every year. In order
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Figure 1.1: Historical atmospheric CO2 level [15] with a few milestones in
the worldwide energy consumption. The two industrial revolutions
initiated a steep rise of CO2 in the atmosphere, which increased together
with technological development.

to avert a significant effect on global temperature, humankind should
strive to maintain CO2 below 550ppm [14]. Since energy production
is one of the main drives of carbon emissions and other climate change
factors, most organizations and governments all over the world have
been drawing long-term plans to reduce energy consumption.

1.2 buildings energy consumption
Buildings are responsible for a large share of global primary energy
consumption and environmental impact. In the European Union (EU),
they account for 40% of the total energy used and a significant share
of the total CO2 emissions [12]. In the United States of America (USA),
buildings accounted for about 41% of primary energy consumption
in 2010, 44% more than the transportation sector and 36% more than
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the industrial sector [16, § 1.1.3]. In the USA buildings are responsible
for 40% of CO2 emissions.

Figure 1.2 shows the trend in electrical energy consumption for the
residential and commercial, industrial and transports sectors in the
EU and in the USA over the past decade. European data is available
from the Eurostat database [17, Tab. ten00094, 18], and American data
is available fromMonthly Energy Review - November 2018 [19, Tab. 7.6]).
Residential and commercial sectors, taken together, represent more
than two-thirds of the total energy consumption, which is double the
amount of industry. Electrical consumption in transports sector is
significantly lower, since petrol and its derivatives are used directly in
vehicles.

A similar message can be read from Figure 1.3, which shows the
impact of CO2 emissions of different sectors in the EU and the USA.
European data is available from EU Energy in Figures, [20, § 4.1.2],
and American data is available from Monthly Energy Review - Novem-
ber 2018 [19, Tabs. 12.2–12.5]). The shares of CO2 emissions due to
residential and commercial sector are different between the EU and
the USA due to a different classification and measuring approaches.
However, the two sectors are responsible for a significant share of the
total emissions.

It appears evident how buildings are an important actor in global
energy efficiency. In the last decades, governments, institutions, in-
dustries and the general public have become aware of the weight of
buildings with respect to energy efficiency and environmental impact.
The field of energy efficiency in buildings has attracted significant
research focus, and buildings have become an important part of short-
and long-term energy strategies and policies.

1.3 energy efficiency strategies and policies

Several countries in the world defined short- and long-term strategies
and policies for energy efficiency.

7



1 Introduction

0

1

2

3

4

El
ec
tr
ic
al

C
on

su
m
pt
io
n

[P
W

/h
] European Union (EU28)

2005 2007 2009 2011 2013 2015 2017
0

1

2

3

4

Year

El
ec
tr
ic
al

C
on

su
m
pt
io
n

[P
W

/h
] United States of America

Residential and Commercial
Industry
Transports

Figure 1.2: Shares of electrical energy consumption in the EU andUSA. Resid-
ential and commercial sectors, taken together, are responsible for almost
double of the industrial electrical consumption [17, Tab. ten00094, 19,
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1.3.1 european union
In 2007, the EU proposed and defined its famous ‘20 20 by 2020’ energy
efficiency plan. [21]. The title came from the two major goals that the
union set in its resolution by 2020:

– greenhouse gases emission will be reduced by at least 20% com-
pared to the levels of 1990, and by a more ambitious 30% in case
of an international agreement;

– renewable energies will reach a share of at least 20% of total
energy consumption.

The union sees also opportunities aside from the environmental
impact. Less dependency on oil and gas imports will result in signi-
ficant savings and reduced dependency on other international actors.
Moreover, the long term strategy is expected to create a significant
number of jobs in the renewable energies and other eco-industry sec-
tors.

On the longer term, the EU has a major goal of halving the CO2
emissions by the year 2050 compared to the levels in the year 1990.
The 20 20 energy efficiency plan is indeed one of the steps toward this
more ambitious goal.

Other plans to follow the 20 20 plan have been discussed and drafted
in the past years. In 2016, a proposal for a new directive has been
published, advocating for an extension of energy efficiency targets of
30% by the year 2030 [22].

european buildings

In all European directives and resolutions about energy efficiency,
buildings are explicitly mentioned as an important sector. In 2010, the
union published the ‘Energy Performance of Buildings Directive’ [12].
The directive defines a general framework for assessing energy effi-
ciency in buildings, minimum requirements for newly constructed
and renovated buildings and building equipment, and promoted cer-
tifications for highly energy efficient buildings. The directive puts
significant focus on nearly zero-energy buildings, i.e. buildings with very
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high energy efficiency, which should be covered by renewable energy
sources. By the year 2018, all newly constructed public buildings in
the EU are required to be nearly zero-energy buildings and, by the
year 2020, the requirement is extended to every newly constructed
building.

Different agencies within the union have been promoting and finan-
cing research and development of nearly zero-energy buildings, such
as the Executive Agency for Small and Medium-sized Enterprises [23].
The EU has also promoted several agencies and offices to keep track
of the building sector, such as the Buildings Performance Institute
Europe, the Building Stock Observatory or Build Up, the European
portal for energy efficiency in buildings.

Reports tracking the progress with respect to the directive for energy
performance in buildings stated that progress was visible in many
member states [24], however, only about half of the estimated energy
savings was achieved [25]. A series of recommendations have been
produced to increase compliance with the directive, such as

– increasing transparency about future regulations;
– promoting further education to improve skills in the buildings

workforce;
– distribution of examples of good and bad practices;
– increasing financial support to member states;
– clarifying compliance requirements;
– promoting the value of energy performance certifications to final

users;
– standardizing certification methodologies.

In 2018, a new directive for energy performance in buildings was
published [26]. Member states shall define a long term renovation
strategy for their national stock of buildings, both public and private.
The strategy should aim to a complete renovation by the year 2050 so
that all buildings are transformed in highly energy efficient buildings.

11
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1.3.2 denmark
Aside from goals imposed by the EU, member states have also specific
national goals and strategies. Denmark long-term objective for energy
efficiency is to remove any dependency on fossil fuels. In order to
pursue its long-term objective of going fossil-free in 2050, the coun-
try defined shorter-term, intermediate goals in its Energy Strategy
2050 [27].

The year 2020 will be an important milestone in the energy strategy.
The plan states that fossil fuels usagewill be reduced by 33% compared
to 2009, and the share of renewable energy sources will increase by
33% compared to 2009. Moreover, the focus on energy efficiency will
result in reducing primary energy consumption by 6% compared to
2006.

danish buildings

The Danish government recognizes the importance of buildings in
global energy consumption, and buildings design and construction
are regulated in order to achieve safety, occupants comfort and energy
efficiency. Energy efficiency goals have been encoded as a framework
for energy efficient buildings, which has been updated over the past
decade to reflect the current objectives and technological advance-
ments.

In 2010, the Danish buildings regulations BR10 stated that, for newly
constructed building, the annual energy consumption for heating,
ventilation, cooling, domestic hot water and lighting must not exceed
71.3 kWh/m2, plus 1650 kWh divided by the heated floor area [28,
§ 7.2.3]. For buildings constructed from 2015 onward, the annual
energy consumption must not exceed 41 kWh/m2, plus 1100 kWh
divided by the heated floor area [28, § 7.2.4.2].

In 2015, a new version of the buildings regulations was released
under the name of BR15, which introduced the new class for highly
energy efficient buildings constructed after 2020 with an ambitious
efficiency level. For buildings in class 2020, the annual energy con-
sumption must not exceed 25 kWh/m2 [29, § 7.2.4.2]. The most recent
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regulations, BR18, released in 2018, included class 2020 as a voluntary
requirement, i.e. its efficiency is no longer mandatory for buildings
constructed after the year 2020 [30, chap. 25].

The introduction of class 2020 at a national level in 2015, while at
European level its efficiency will be required only from 2020, has been
praised by reports from the EU [25]. This allowed the Danish sector to
adapt their products to the future standards in advance, and already
resulted in highly efficient products to reach the market.

1.3.3 united states of america
The USA have also objectives with respect to increasing energy effi-
ciency and reducing environmental impact.

In the year 2013, the Alliance Commission on National Energy Ef-
ficiency Policy adopted the ambitious goal of doubling energy pro-
ductivity by the year 2030 compared to levels in 2011 [31]. Estimated
benefits of reaching such goal are significant. Individual households
would achieve over 1000 $ yearly savings in energy consumption, over
one million new jobs would be created in the related industry, and
both carbon emissions and oil imports would decrease by one-third.

The commission proposed a series of recommendations in order to
reach the objective set, such as

– increasing finance opportunities for research and development
in energy efficiency;

– increasing federal funding;
– strengthening regulations for vehicles, buildings and other equip-

ment;
– promoting education of energy users.

american buildings

Government bodies in the USA have been regulating the buildings
sector and proposed plans to improve energy efficiency. Until 2012,
the Department of Energy published a yearly report about energy con-
sumption in buildings [16]. Since 2012, monthly reports are available
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for the general public, which contain fewer aggregate data and can be
used for less coarse analysis of energy consumption over time [19].

In 2015, the Department of Energy made a common definition of
zero energy buildings [32]. The advantage of a shared definition at
national level is to make the evaluation and certification procedures
uniform and unambiguous across the country, both for private users
and companies.

Along the same direction, the Building Energy Codes Program was
promoted by the Department of Energy as a way to improve energy
efficiency in buildings and inform end users [33]. These actions have
been taken with the goal of a long-term renovation of the buildings
stock. It is estimated that by 2030 18% of buildings will be more recent
than the current year, and many more will be renovated. Reports
suggest that the program resulted in 11.5% energy savings before
2015 [34].

1.4 building faults and energy waste
Buildings and building equipment are complex and massive systems.
Not only they are large in the sense of physical size, e.g. a commercial
building such a university lecture hall can reach thousands of square
meters spanning several floors, they are also large in the sense of
the amount of subsystems and their interactions. Moreover, modern
buildings contain a significant amount of intelligence and control.

While, in the past, buildings only had manual lighting switches
in each room and a centralized heating system operating with fixed
schedules and manually controlled radiators, in the latest decades
their complexity had increased enormously. Modern buildings are
automatically and centrally managed by a building management sys-
tem (BMS), which controls all building subsystems such as lighting,
heating, ventilation and air conditioning (HVAC). The current state
of the building is recorded through a complex network of sensors
and meters, which measure indoor conditions such as temperature
and air quality, and operating quantities such as ventilation rate, light
intensity level, heating and cooling signals.
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Every single component of every subsystem, as for every man-made
product, is subject to wearing, misconfiguration and, in general, faults.
A fault is any instance of a component which does not perform its
task as expected. The definition of faults is somewhat vague and their
nature can be extremely heterogeneous. Isermann define a fault as
‘ an unpermitted deviation of at least one characteristic property of a
variable from an acceptable behaviour. Therefore, the fault is a state
that may lead to a malfunction or failure of the system’ [13]. Examples
of faults are

– a stuck sensor which returns constant readings regardless of the
actual measurement;

– a noisy sensor which returns inaccurate readings;
– a worn-out fan which consumes more energy to maintain the

same airflow compared to its design value;
– a misplaced energy meter that monitors the wrong subsystem;
– a wrong schedule where Sundays are registered as working days;
– a wrong configuration where an office is classified as a storage

unit.

Faults impact building operations in two different, but not neces-
sarily distinct, ways. They may cause occupants discomfort or energy
waste.

Occupancy discomfort happens when the building’s operation is
degraded such that the indoor conditions are no longer within the
acceptable range for humans comfortable conditions. E.g. a broken
heating system during winter could cause the indoor temperature to
fall below 15 ∘C. Another example is a broken light bulb, which makes
a room dark.

Energy waste, on the other hand, happens when the system con-
sumes more energy than it should according to its design. E.g. insuf-
ficient insulation cause an increase in heating. Another example is
simultaneous heating and cooling of a space.

The two aspects often oppose each other, i.e. a fault causes either
occupants discomfort or energy waste, but sometimes a fault results
in both. E.g. broken lights, while obviously causing discomfort, ac-
tually result in energy savings. Similarly, insufficient insulation does
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not affect occupants, if the increased heating results in appropriate
indoor temperature. On the other hand, a setpoint wrongly set to 10 ∘C
during the summer has the double effect of making a room extremely
uncomfortable, and of unnecessarily increasing cooling.

Faults causing occupants discomfort are usually easily detectable, at
least because said occupants would complain to the building manage-
ment. Faults causing energy waste, on the other hand, are more subtle
and difficult to detect. If no system is set up to monitor a building and
no maintenance operation is scheduled, faults can go unnoticed for a
very long time. For this reason, most research about faults is done in
the context of energy waste.

1.4.1 impacts of faults

Estimating the impact of faults with respect to energy waste is a diffi-
cult task.

In 2005, the 13 most common faults in buildings were estimated
to be responsible for over 99.6 TWh and 3.3 billion $ energy waste in
the USA [35, Tab. 2.1, 36, Tab. 1]. Figure 1.4, from the same report,
shows the energy and financial impact of the most common faults in
buildings [35, Tab. 2.1, 36, Tab. 1]. Figure 1.5 shows a more recent
report from 2017, focused on small commercial building [37, Appx. C].

While the numbers are on different scales and the specific faults do
not exactly coincide between the two reports, the overall trend is the
same. Duct and building envelope leakage is the largest culprit for
energy waste, followed by situations when ventilation and lighting
are turned on when no occupants are in the building.

The yearly financial impact of these faults ranges from 3.3 billion $
to 17.3 billion $, with 3.3 billion $ being the most conservative estim-
ate, according to the former report. The latter report estimates over
6 billion $ yearly waste due to faults.

Figure 1.6 shows the estimated energy savings for different categor-
ies of buildings when performing recommissioning operations, which
includes addressing existing faults [38].
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Figure 1.4: Impact of common faults in American buildings in 2005 [35, Tab. 2.1, 36, Tab. 1].
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1.5 fault detection and diagnostics

The traditional way to detect and fix faults is to perform periodic
recommissioning, i.e. going through the building from the grounds
up, taking note of everything that does not work, and fix it. The
main disadvantage of this approach is that such operations are costly
and, therefore, are only scheduled once in long periods. For this
reason, faults have effects for a long time before they are discovered
and addressed.

With technological improvements, modern buildings are able to col-
lect data, and such data can be used to detect faults presence without
physical interventions. In the past few decades, therefore, FDD for
building systems has emerged as a new field. Many methods have
been proposed for detecting faults and issues with building equip-
ment [39, 40, 41].
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1.6 research questions and objectives
The overall research question for this thesis is the following.

How can faults in buildings energy facilities be automatic-
ally identified and explained?

Sub-questions are the following.

– What are the characteristics of faulty behaviour?
– What kind of data and infrastructure support would

be necessary for effective FDD?
– Which techniques are effective in FDD?

The objectives of this thesis, therefore, are to develop a framework
for FDD in building systems and to investigate which methods are
effective.

1.7 energy informatics and the coordicy
project

The work done in this thesis was part of the COORDICY project. CO-
ORDICY is a joint Danish–American interdisciplinary research project
for advancing ICT approaches in the context of energy efficiency in
buildings. The project aimed to contribute to Denmark’s objective
of reducing energy consumption by 50% and 75% in existing and
newly constructed buildings by 2050 [27], and the USA’s objective of
doubling energy productivity by 2030 [31].

One of the underlying assumptions of the COORDICY project is
that in order to achieve high energy efficiency in buildings or in other
sectors, it is essential to make use of techniques from information and
communication technology (ICT), energy engineering and computer
science. This recent discipline goes under the name of energy informat-
ics. Energy informatics studies solutions for increasing the intelligence
of energy systems by developing solutions for intelligent control, sys-
tem diagnostics, performance monitoring and usage analysis.
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The main goal of the project is, therefore, to develop a holistic and
comprehensive ICT framework for increasing energy efficiency in
buildings.

1.7.1 objective and hypothesis

Buildings represent a significant part of energy consumption. In the
recent years, several countries set their own goal to increase building
energy efficiency, such as EU 20 20 [21], the US Better Buildings Initi-
ative [42] or the International Energy Agency EBC programme [43].
The main objective of the project is to use ICT techniques to effectively
improve buildings energy efficiency without compromising occupants’
comfort.

The project has three main hypotheses, summarized in the follow-
ing.

closing the energy gap in energy-efficient public and commercial
buildings

Nowadays, there exist several standard and references to certify high
energy efficient buildings, such as ENERGY Star [44], LEED [45] and
Green Globes. However, it often happens that their actual perform-
ance is significantly worse than the one predicted during design [46,
47, 48, 49]. The cause for this gap is due to the unpredictable effect of
numerous factors, such as occupants behaviour, weather conditions,
thermal dynamics, construction materials, building systems and con-
trol strategies. Comparing the actual performance with the predicted
one is a good estimate of the gap.

The project hypothesis is that ICT methods can be used to estimate
the performance gap and that data-driven diagnostics methods can
be used to precisely identify its causes.
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advancing energy performance by increasing the building’s
intelligence quotient

It is an accepted notion that increasing building intelligence has posit-
ive effects on the energy efficiency of buildings. However, the trade-off
is that high intelligence adds complexity during commissioning and
operation. In the latest years, a new notion of building intelligence quo-
tient suggests that buildings where systems are coordinated together
have higher intelligence than buildings where systems are managed
independently.

The project hypothesis is that energy efficiency can be improved
through increasing building intelligence by combining multi-objective
coordination of decentralized systems with predicted energy perform-
ance. This can allow buildings to meet their design performance and
even to advance their energy class.

balancing deep energy-retrofits and building intelligence quotient

Existing buildings, constructed in the past decades when laxer regula-
tions were in force, can undergo energy-oriented retrofit operations
to improve their energy efficiency. However, extensive retrofit opera-
tions might not be the most cost-effective solution to improve energy
efficiency. Since energy performance strongly depends on occupancy
behaviour, significant improvements can be obtained by increasing
building intelligence. Therefore, the optimal approach is a balance
between the two strategies.

The project hypothesis is that using an energy model of the build-
ing to simulate several trade-offs between retrofit operations and an
increase of building intelligence can estimate the most cost-effective
strategy for performance improvement.

1.7.2 project organization

The project is organized into seven work packages.
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work package 1: sensing and modeling of occupant behavior

The objective of this work package is to develop methods for identify-
ing, estimating and predicting the behaviour of building’s occupants.

work package 2: building modeling and simulation

The objective of this work package is to develop a model for simulat-
ing the building’s operations, with a particular focus on its energy
consumption. The model makes use of the geometrical, structural
and thermal properties, together with occupancy models from work
package 1 and weather forecast.

work package 3: building operating system services platform

The objective of this work package is to develop a platform with sup-
port for construction typologies, thermal properties, building systems
layout, and occupant detection.

work package 4: multi-objective coordination framework

The objective of this work package is to develop a multi-objective
coordination framework for controlling the building operations to
achieve optimal energy performance. The framework is able to fol-
low multiple objectives over decentralized and decoupled building
systems.

work package 5: building diagnostics framework

The objective of this work package is to develop a framework for
detecting and diagnosing the causes for the difference in actual and
predicted energy performance.

work package 6: tool suite construction

The objective of this work package is to develop a suite of tools integ-
rating the results of the other work packages.
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Figure 1.7: Relations between work packages in the project COORDICY.

work package 7: case studies

The objective of this work package is to investigate the three research
questions of the project on real buildings.

The buildings considered for this work package are:

– GreenTech Center, at GreenTech;
– BuildingOdense undervisning 44 (OU44), at University of South-

ern Denmark;
– Sustainability Base, at NASA Ames Research Center;
– Sutardja Dai Hall, at University of California, Berkeley.

The relations between the work packages in the project COORDICY
are summarized in Figure 1.7.

The work performed during this Ph. D. is mainly focused on work
package 5. However, some of the tools and methods developed have
impacted on other work packages as well. The online energy simulator,
presented in Chapter 6, has been a significant part of work package 2,
and it has been used for testing the control framework in work package
4. Software developed internally to the center, such as building drivers
to access weather forecast, and software libraries to access real-time
data storage, are related to work packages 6 and 3. Finally, all the
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methods presented in this thesis have been deployed or tested on
building OU44, which is one of the case studies of work package 7.

1.8 methodology
The methodology used in this thesis is loosely inspired by the ‘case-
study’ methodology, which was thoroughly discussed by Runeson et
al. in the field of software engineering [50]. The methodology is akin
to the experimental-setup methodology, where the researcher designs
a controlled experiment to investigate a phenomenon, eliminating
most of the disturbance and external influences. In the case-study
methodology, on the other hand, the phenomenon is studied in its
natural context.

The case-study methodology consists of the following five major
steps.

1. Design of the case study;
2. preparation for data collection;
3. collection of the evidence;
4. analysis of the collected data;
5. reporting of the results.

At the beginning of the project, an extensive literature review has
been performed. The major databases collecting publications and
research papers in the field of FDD for building systems were quer-
ied, and a list of publications was obtained. Those publications were
read and categorized according to the methods used and the specific
building equipment they focused on, and some of the most interesting
ones were selected. This initial step was useful to gather an initial
overview of the field and the popular techniques and methods, and to
understand the current state of the art.

The second step was to analyse the available case studies. Buildings
from a few institutions were available within the project, in particular,
building OU44 which is physically located on campus. The following
characteristics of building OU44 has been reviewed, by reading its
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technical documentation, interviewing the maintenance crew, and
performing field investigation.

– Physical envelope;
– technical subsystems and equipment;
– building usage;
– data sensing and collection infrastructure;
– data distribution infrastructure;
– control strategies.

Building OU44 offered ambitious features, such as real-time collection
of a large amount of data and a detailed dynamic energy performance
model of the building which can be used for accurate simulations.
However, the sensing and distribution infrastructure was lacking in
many aspects and the simulation workflow was cumbersome. An
action plan was defined to address these inadequacies by developing
necessary tools and libraries, in what could be defined as the prepara-
tion for data collection.

Libraries for accessing the data storage system were developed for
two popular programming languages, Python and Java. Those were
robust and featureful libraries supporting both batch and real-time
data processing, which have been improved over the Ph. D. project and
were also used by other projects at the center1. Additional software
tools were developed, such as building drivers for collecting addi-
tional data, and middleware to ease the simulations of the building’s
behaviour.

Requirements for the software libraries and tools were not exhaust-
ively defined at the beginning of this step. Instead, a more agile and
flexible development approach has been used, and development has
been alternating with requirements definition during the project.

Once these initial steps were completed, several iterations of evid-
ence collection, data analysis and reporting were performed. In each
of these iterations, a specific niche in the field was identified in the
context of the project and of the research questions.
1Some of the libraries were released to the public, and they are available at
https://sdu-cfei.github.io/cfei-smap/library.html for Python
and https://sdu-cfei.github.io/java-libraries/ for Java.
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1.9 Structure of the Thesis

The case-study methodology was then repeated at a lower scale.
Objectives were defined, and a case studywas designed for the specific
iteration. A specialized data analysis tool was developed to perform
FDD on the case study. Finally, a report of the findings was compiled,
often in form of a scientific paper submitted to a peer-reviewed journal
or conference.

1.9 structure of the thesis
The rest of the thesis is structured as it follows. The current state of the
art of the field is reviewed in Chapter 2, where its gap is highlighted,
and the contribution of the thesis is presented. Chapter 3 contains a
short summary of the publications included in the thesis. In Chapter 4,
the main case-study building OU44 is presented.

Part II contains the individual publications, both published and
under review, included in this thesis. In Chapter 5, the topic of data
validation is presented, together with a practical experience of sensors
faults identified in the building. In Chapter 6, an online energy sim-
ulator is presented as a tool for hierarchical FDD on buildings. In
Chapter 7, linear regression virtual sensors are used to introduce re-
dundancy in ventilation units, and a FDD method is proposed to
exploit such redundancy. The same method is improved in Chapter 8,
where non-linear and statistical models are used to increase accuracy.
In Chapter 9, consensus among multiple peers is exploited to remove
the requirement of fault-free training data in data-driven FDD meth-
ods. Finally, the impact of faults on the building’s energy consumption
is assessed in Chapter 10, where a FDD method for ventilation units is
proposed.

Part III concludes the thesis. In Chapter 11, future research direc-
tions are suggested in the context of the thesis. The findings of the
thesis are summarized and elaborated in Chapter 12.
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chapter 2state of the art
In this chapter, the state of the art for fault detection and diagnostics
(FDD) in building systems is reviewed. In addition to that, a short
review of the state of the art is also presented for virtual sensing
techniques and building simulations, which are fields covered in some
of the publications included in this thesis. Finally, the gap in the state
of the art is identified, and the contributions of this thesis—and of the
individual publications included—are summarized.

2.1 fault detection and diagnostics methods
The panorama of FDD for building systems in the past two decades
has been reviewed by Katipamula et al. in 2005 [39, 40], and their
work was updated by Kim et al. in 2018 [41]. The authors present a
comprehensive review of almost 200 publications.

The authors propose two different schemes for classifying FDD
studies, one based on the approach used, and one based on the specific
equipment under test. In the former, studies are divided in process-
history-based, quantitative-model-based and qualitative-model-based
methods, and are further divided according to the specific technique,
as shown in Figure 2.1. Each of these families of methods has different
advantages, disadvantages and trade-offs, as well as implementation
constraints and caveats.

In the latter, studies are divided depending on whether the method
was applied to systems or equipment available in small buildings, large
buildings, or both, as shown in Figure 2.2. Studies are further divided
depending on the specific system or equipment: air conditioners and
heat pumps, chillers and cooling towers, air handling units (AHUs)

29



2 State of the Art

Fault
Detection and
Diagnostics

Quantitative
model based

Detailed physical
models

Simplified physical
models

Qualitative
model based

Rules based

Expert
systems First

principles
based

Limits
and

alarms

Qualitative
physics
based

Process
history based

Gray box Black box

Other pattern
recognition
techniques Artificial

neural
networks

Statistical

Figure 2.1: Classification of FDD methods based on the approach [41]. In
quantitative-model-based methods, a detailed model of the system
is created from first principles. In qualitative-model-based methods,
qualitative relationships between the systems components are used
to develop a model of the system. In process-history-based methods,
historical data is used to train a model of the system .
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and variable air volume (VAV) units, fan coil units, commercial re-
frigerators, lighting equipment, water heaters, or the entire building.
Each building system presents unique challenges and has a different
impact on both building operations and energy consumption.

2.1.1 process-history-based methods

History-based methods, often called data-driven methods in the liter-
ature, exploit historical data for FDD. Historical data is used to train
a black-box model of the system under test, which is used to predict
and validate the system itself.

Mostmethods define two separate phases: an offline ‘training’ phase
and an online ‘testing’ phase. In the former, historical data is fed to
the black-box model and used to estimate its hidden parameters. The
output of the training phase is a black-box model which predicts the
state of the system under test. The training phase occurs only once,
or once in a while, when a new model must be generated, and does
not have significant execution time constraints. Therefore, complex
techniques which require significant training time and computational
power are still suitable for this approach.

In the testing phase, the black-box model is used to predict and
validate the state of the real system. When the system is operating
normally, its behaviour matches the one learned by the model. Faults,
on the other hand, impact the behaviour of the system such that it no
longer matches the predictions from the model. Therefore, when the
system deviates from the model a fault is detected.

Black-box models represent mappings between input and output
variables, without any information about the physics of the system. For
this reason, data-driven methods can be applied when the internals
of the system are unknown, as long as historical data is available.
This has another advantage: a data-driven method can be seamlessly
applied to different systems without significant changes. After the
method undergoes a new training phase, which does not require any
customization or often even manual operation, a new model is trained
with historical data from the new system and it can be deployed.
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Figure 2.2: Classification of FDD methods based on the building equip-
ment [41]. Air conditioners and heat pumps are usually only found in
small buildings. Large buildings, on the other hand, have often larger
equipment such as cooling towers, AHUs and fan coil units. Some
components, such as water heaters and lighting infrastructure, are
present in both small and large buildings .
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A single model can only learn the behaviour of a healthy system.
When its predictions stop matching the real system, the only possible
conclusion is that the system is no longer healthy. A popular approach
to extend data-driven methods, so that they can be used to precisely
diagnose the specific fault affecting the system, is to train additional
models of the faulty systems. In this case, the state of the system is
compared with predictions from several models, each representing
the system under a specific fault, including the special case of no
faults. The model matching the current state of the system is the one
corresponding to the current fault. If no models match the current
state, an unknown fault is happening.

The main disadvantage of data-driven methods is the requirement
for historical data. Training data must be available for all operational
profiles of the system, e.g. during both summer andwinter and during
working and non-working hours. This requirementmakes deployment
on newly constructed buildings impractical, since historical data is not
available during the first operational period. For the same reason, these
methods cannot accurately model transients and other fast dynamics
phenomena, or infrequent operations which do not appear often in
historical data.

Another issue is that historical data must be fault-free, i.e. it must
be collected from a healthy system. If instead it was collected from a
system affected by a fault, the resultingmodel would represent a faulty
system and would hence classify faulty behaviour as healthy. This
issue is particularly significant for faults present since construction: it
is impossible to recognise an anomalous behaviour by only looking
at the process history if it was present since construction. If used for
fault diagnostics, data-driven methods require labelled faulty historical
data, i.e. data generated by systems affected by known faults, which
are rarely available.

Another disadvantage of data-driven methods is their inaccuracy.
Simple and understandable models, e.g. linear regression models, can-
not capture complex interactions between inputs and outputs. On the
other hand, complex models such as artificial neural network (ANN)
or statistical machine learning techniques are able to learn complex
interactions but suffer from increasing complexity and overfitting.
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Therefore, without using knowledge about the physics of the system
it is difficult to accurately predict its behaviour.

2.1.2 quantitative-model-based methods

Quantitative-model-based methods, often called simply model-based
methods in the literature, make use of detailed knowledge of the system.
A model of the system under test is created from first principles, rep-
resenting the mathematical dependencies and interactions between its
components. Similarly to process history based methods, the model is
used to predict and validate the state of the real system.

In quantitative-model-based methods, the ‘training’ phase is per-
formed manually by scientists and technicians, who create the model
by studying in detail the system. Depending on the complexity and
accuracy of the model, this step can involve the estimation of a few
parameters, which can be done by using historical data. The final
output is again a model that predicts the behaviour of the system
under test.

Quantitative models are often much more accurate than black-box
models, due to explicit modelling of physical interactions. For instance,
a black-box model can only learn the relation between indoor and
outdoor temperatures from data alone. A physical model, on the other
hand, could estimate the heat loss, using the heat transfer equation and
the precise coefficients for the wall materials and the heat gain, using
information on the weather forecast, radiators layout, and building
schedules.

As mentioned before, data-driven methods require a significant
amount of historical data covering all the operational profiles. Quant-
itative models, on the other hand, can predict the behaviour of the
system during transients and fast dynamics phenomena, as well as
during infrequent operations. The accuracy of quantitative models is,
in general, limited by the accuracy of the model, which is a trade-off
with its complexity.

In order to properly diagnose the specific fault affecting the system,
different models are used to predict the behaviour of faulty systems,
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such as in data-driven methods. For quantitative model based meth-
ods, however, labelled faulty historical data is not necessary. The
model can instead be directly modified to represent a faulty system.
E.g. the efficiency of a fan can be lowered to simulate wearing, or
readings from a sensor can be set to a constant value to simulate a
stuck sensor.

The main disadvantages of quantitative-model-based methods are
the complexity of the models and the time and effort required to
create them. For data-driven methods, the training phase can last for
a few days when using the most complex black-box model over a large
amount of data. On the other hand, creating a physical model of the
system can take several weeks and may require to analyse in details
the documentation of the system, or even on-site investigation, e.g. to
confirm construction materials or rooms layout.

The higher complexity not only affects the time necessary to create
the model, but also the time necessary to execute it. While most of
the data-driven methods can be executed immediately on real-time
data, quantitative models, depending on their complexity, may take
several minutes or even hours. For this reason, it is often infeasible to
use quantitative-model-based methods for fast, real-time FDD.

The strong dependency of thesemodels on the specific system under
test is one of the reasons for their high accuracy. However, this is also a
reason for low extensibility. Not only parameters, but also the structure
of the model itself is strongly tied to the system. A different system
might have different geometry, or might be ruled by different physical
equations. Therefore, a model suitable for one system cannot be used
for a different one, and it must be redesigned from scratch.

Finally, complex models often contain parameters that cannot be
obtained from the documentation of the system alone. In this case,
historical data can be used for parameter estimation. While this is
an effective way to estimate parameters, it carries along the same
drawbacks from data-driven models, i.e. the necessity of fault-free
historical data or the impossibility of deploying the method on newly
constructed systems. While the impact of faulty historical data may
be smaller on quantitative models, since it only affects a part of it, it
could decrease the accuracy.
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2.1.3 qualitative-model-based methods
Qualitative-model-based methods, often conflated in rule-based meth-
ods, make use of a priori knowledge of the system. Such knowledge,
usually provided by system documentation or by experts in the field,
is used to create sets of rules or qualitative physics systems. These
systems represent the behaviour of the system at a higher level and
they are easily understandable.

While simple in principle, qualitative-model-based methods have
several advantages. Their implementation is straightforward and,
when formal documentation is available, they can be derived auto-
matically without human intervention. Field experts can reason about
the models and compare them to their understanding of the system.
Therefore, models can be validated without the use of historical data.

These methods often represent the state of the system at a coarse
level. This makes the methods robust to numerical uncertainties and
noise, which do not affect the quality of the results. Qualitative-model-
basedmethods, therefore, are often not significantly impacted by noisy
sensors, inaccurate parameters or human error in schedules.

Many commercial building management systems (BMSs) offer rudi-
mentary FDD through rule-based alarms. Alarms can be used to
detect faults with respect to the building operations, e.g. when the
temperature in the room rises above a threshold, an alarm is triggered.
Another usage is to detect unnecessary energy consumption, e.g. an
alarm can be triggered when lights are on in an empty room, or when
both heating and cooling are on in the same space.

While the simplicity of qualitative-model-based methods carries
many advantages, it also comes with trade-offs and drawbacks. Com-
plex dynamics require a huge number of narrow and specific rules,
which would both make the set of rules unwieldy and difficult to
maintain, and would remove the ability to reason about them and
validate them. Qualitative-model-based methods, therefore, are only
effective to represent simple, high-level behaviour.

Aswith quantitativemodel basedmethods, qualitative-model-based
methods are strongly dependent on the specific system. A set of rules
designed for a specific system would not necessarily work for a differ-
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ent one. For the same reason, qualitative physics may differ between
the two systems, making a common model impossible or inaccur-
ate. Compared with quantitative models, however, this drawback is
slightly mitigated by the simplicity of creating a new model.

2.1.4 mixed methods

Methods from each category have different trade-offs and are suitable
for different kinds of systems. Hybrid approaches that make use of
multiple methods are also common, in order to exploit advantages and
reduce the disadvantages of individualmethods. Usingmultiplemeth-
ods also increases robustness and reliability: if multiple independent
models detect a fault, the chance for a false alarm is lower.

Quantitative models contain sometimes parameters that are difficult
or impossible to measure on the real system. E.g. an energy model
of the building may require parameters representing the plug load
energy consumption due to room level equipment. When available,
historical data can be used to estimate such parameters and to increase
the accuracy of the model.

Data-driven and quantitative models are often sensitive to noise
in measurement and numerical uncertainty, contrary to qualitative
models. Fuzzy logic, often used in rule-based methods, can be used to
increase the coarseness of data which in turns increases the robustness
of the method at the expense of its accuracy.

Accuracy in data-driven methods can be increased by structuring
their model with information about the physics of the system. E.g.
known relations between input and output variables, such as linear
or quadratic, can be enforced by selecting an appropriate regression
model. Sensitivity analysis can also be used to filter out variables
with a lower impact, reducing the computational power required for
training the model.
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2.1.5 popularity of fault detection and diagnostics
methods

Kim et al. report the shares of publications in each category, which are
shown in Figure 2.3 [41]. The vast majority of FDD publications make
use of process-history-based methods, while only a relatively small
number use quantitative-model-based methods.

The authors speculate that the popularity of data-driven methods
is due to the reduced modelling complexity. Training a data-driven
model requires large computational power, which is becoming cheaper
over time. On the other hand, creating a set of rules requires significant
human effort, and even more does creating a quantitative model.

Another reason for this skew between the methods could be the
increasing availability of data in the field. While historically buildings
were not equipped with many sensors and meters, buildings construc-
ted in the past decade, perhaps due to decreasing sensors price and
complexity, have extended infrastructure for data collection.

With respect to building systems, AHUs and VAV units attract the
most research. AHUs, VAVunits, and other heating, ventilation and air
conditioning (HVAC) equipment are often the most critical systems in
buildings and they account for the largest share of energy consumption.
Therefore, addressing faults in these systems has the potential of large
energy saving compared to other smaller equipment such as lighting
systems or fan coils.

2.2 virtual redundancy
Redundancy in a system is an effective tool for FDD. When the same
quantity is measured twice, either both measurements match within a
certain threshold, or they deviate from each other. In the that case, at
least one of the measurements is incorrect. When multiple independ-
ent measurements are available, it is possible to precisely isolate the
faulty one.

Physical redundancy, however, is seldom available in building sys-
tems. Duplicating a sensor, a meter or an actuator increases the cost
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Figure 2.3: Shares of reviewed FDD publications by category and by building
equipment. The majority of publications propose data-driven methods,
while quantitative-model-based methods are seldom used. AHUs
and VAV units are the equipment most covered in publications by a
large margin, while for others, such as lighting, only few methods are
presented. The review covered 197 publications [41].
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and the complexity of the system. In some cases, it is even infeasible to
duplicate a component due to space limitations. Virtual redundancy,
on the other hand, does not have these disadvantages. Interactions and
relationships between quantities inside the system can be exploited to
obtain the same readings from different sources.

Li et al. present a comprehensive review of virtual sensing tech-
niques for building systems [51]. The authors propose three categor-
izations, depending on the characteristic of the measurement, the
application purpose, and the modelling method.

In the first categorization, virtual sensing techniques can either
be used to measure a quantity during a transient or at steady state.
The former case is useful when the system behaviour reacts quickly to
changes in input variables, and it is useful for automatic control. When
the behaviour has instead slower dynamics, steady-state modelling is
usually enough. FDD and performance monitoring applications often
fall into the steady-state case.

In the second categorization, techniques are either used for ob-
serving hidden state or for monitoring and diagnostics. Some quant-
ities cannot be measured directly, either because of complexity con-
straints or because it is technically impossible to construct the specific
sensor. For instance, no physical sensor couldmeasure the efficiency of
a motor, but a virtual one could compute it by dividing the generated
workload by the consumed energy. In the second case, virtual sensors
are used to introduce redundancy in the system in order to monitor
performances and perform FDD.

The final categorization depends on the technical methods used to
develop the virtual sensors. The authors follow an approach similar
to the one presented for generic FDD methods, i.e. virtual sensors
methods are divided between history-based methods, quantitative-
model-based methods and qualitative-model-based methods.

2.3 building performance simulation
Simulating the energy performance of a building is a useful technique
for FDD. It makes it possible to assess the building performance at
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higher design stages but also after construction and during its normal
operational life. Moreover, it allows testing control strategies and
recommissioning processes without disrupting the operation in the
real building.

Many software tools are available for simulation. Two of the most
popular ones in the current panorama are EnergyPlus and Modelica.
EnergyPlus is a specific engine developed by the Lawrence Berke-
ley National Laboratory for simulating energy consumption in build-
ings [52]. Modelica is a more generic software for simulating technical
systems [53]. It can simulate an entire building, however, it is more
often used to simulate independent subsystems such as AHUs or indi-
vidual rooms. Other general-purpose tools can be used as well, such as
Matlab, Simulink, or even general-purpose programming languages
such as Python, Java or C++.

Clarke et al. discuss the overall topic of building performance sim-
ulations [54]. Three main aspects are considered as objectives for
building performance simulation solutions, i.e.

– high integrity representation, in order to accurately model the
real systems;

– coupling of different domainmodels whichmay require different
modelling strategies;

– design process integration with building constructors.

The current and future requirements for building performance simu-
lation are discussed, accounting for micro-grid infrastructure, integ-
rating urban energy management, and internet energy systems. In
particular, the authors stress the lack of collective effort to standardize
the design and implementation of solutions for building performance
simulation, which results in duplicated work in the field.

The potential of simulating the behaviour of buildings and com-
paring their expected and real performance for FDD and continuous
commissioning is discussed by Costa et al. [55] in the context of the
Building EQ program [56]. Visualization techniques are described as
a fundamental tool to facilitate manual FDD operated by the build-
ing management, and the authors propose a layered visualization
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strategy, where detailed information is hidden until a fault is suspec-
ted at a higher level. Several visualization techniques are shown and
suggested for specific FDD instances. Finally, building performance
simulation are a useful tool for testing different control strategies.

2.4 contributions
The contribution of this thesis is two-fold. On one hand, the topics
covered by the publications included in this thesis and their sequence
were carefully laid out to produce a holistic contribution to the field
at a larger scope. On the other hand, each publication covers a well-
defined niche in the field and advances the current state of the art
within its scope.

2.4.1 holistic contribution
FDD for building systems is a relatively young field and, while it spun
the interest of many researchers who presented interesting, effective
and advanced methods, it is still far from maturity. In particular, no
comprehensive frameworks for FDD that cover the entirety of build-
ing systems have been proposed, and most of the publications only
focus on ad hoc techniques for individual components or subsystems.
Therefore, while many techniques have been proposed, no integrated
solution that can be easily deployed on a real building is available.
Commercial solutions are also at their infancy and, while some BMS
offer FDD features, they are usually rudimentary, such as threshold-
based alarms or simple rules, and advanced techniques are not yet
implemented.

In this thesis, an integrated framework for FDD in building systems
is presented. The framework, whose main foundations are presented
in Chapter 6 [2], considers the following system hierarchy.

1. Whole building.
2. System. One of the main building systems, such as HVAC, light-

ing, or air distribution system.
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3. Subsystem. A smaller section of a system. E.g. for HVAC, it could
be a specific ventilation unit, for the lighting system, it could be
a lighting zone and, for air distribution systems, it could be an
individual room.

4. Component. An individual component inside a subsystem. E.g. a
sensor in a ventilation unit or in a specific room.

At first, the infrastructure for sensing and collecting building data
is validated. Correct building data is necessary for any application,
including FDD. This aspect is described in Chapter 5 and in the con-
ference paper ‘A Practical Approach to Validation of Buildings’ Sensor
Data: a Commissioning Experience Report’ [1].

Once the infrastructure for reading the state of the building can be
trusted, faults are detected using a top-down approach by comparing
the building’s energy performance with the expected one, obtained
from simulation using its dynamic energy performance model. If
the overall performances are lower than expected, they are compared
recursively with less aggregate meters, by traversing the energy distri-
bution tree, until the specific under-performing subsystems are iden-
tified. This aspect is described in Chapter 6 and in the journal paper
‘Online Energy Simulator for Building Fault Detection and Diagnostics
Using Dynamic Energy Performance Model’ [2].

At this point, specialized FDD methods for the specific subsystems
can be used to detect and precisely diagnose the component respons-
ible for the reduced performances. Due to their large contribution to
energy consumption in buildings, in this thesis, the focus has been
on ventilation units and air distribution systems. Chapters 7 to 10,
and their relative publications [3, 4, 5, 6], present some specialized
methods for FDD on these systems.

In conclusion, this framework allows to systematically link reduced
performances of a building to the faulty subsystem and, afterwards,
to the faulty component.

Table 2.1 shows the stack of the building hierarchy covered by the
publications included in this thesis. The publications cover the en-
tire stack of building systems, from the whole building layer to the
individual components.
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Table 2.1: Stack of the building hierarchy covered by each publication. The publications included in this thesis
cover the entire stack of building systems, from the whole building layer to the individual components. .

Chapter 5 Chapter 6 Chapters 7, 8 Chapter 9 Chapter 10

Sensors
validation

[1]

Online
simulator

[2]

Virtual
sensors
[3, 4]

Consensus
[5]

Faults
simulation

[6]

Whole Building

System

Subsystem

Component
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2.4.2 contributions of individual publications
Each of the individual publications included in this thesis, available
in Chapters 5 to 10, has a contribution in its own specific niche.

Moreover, the methods used in these publications cover all the main
groups in the categorization of FDD methods presented by Kim et al.
and summarized in Section 2.1, i.e. data-driven, model-based and
rule-based methods. Table 2.2 summarizes the methods used by each
publication.

sensors validation

Many publications, especially those that use simulations, assume ideal
infrastructure conditions. Data is assumed to be available continuously
with no gaps and to be collected with a fixed, common frequency. This
assumption, however, does not necessarily hold for real-world systems.
In Chapter 5, a framework for validating input data is presented [1].
A particularly novel contribution was a test for detecting missing data
when threshold-based sensors are used. Those sensors report read-
ings with time-variant frequency, for which common methods in the
literature would produce a high number of false alarms.

Due to the complexity and cost of building systems, it is often im-
practical to build a custom ‘testing’ unit, and, instead, researchers can
only study real ‘production’ ones. This makes it difficult to collect
data from genuinely faulty systems, since causing faults on actually
used buildings might deteriorate or disrupt their operation. Therefore,
most research is done using simulated data, real data with simulated
faults or, rarely, real data with artificially induced faults. In Chapter 5,
instead, an actual, unplanned fault on an existing building is detected
and reported to the facility management. Later, it could be observed
from data that the fault was fixed.

online energy simulator

As mentioned in Section 2.3, using simulations is a popular approach
for generating data and testing FDD methods in building systems.
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Table 2.2: Methods used in each publication with respect to the common classification of FDD methods,
i.e. data-driven, model-based and rule-based. Each of the main methods is covered by one or more
publications.

Chapter 5 Chapter 6 Chapters 7, 8 Chapter 9 Chapter 10

Sensors
validation

[1]

Online
simulator

[2]

Virtual
sensors
[3, 4]

Consensus
[5]

Faults
simulation

[6]

Data-driven

Model-based

Rule-based
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Moreover, simulations are useful for other applications such as eval-
uating recommissioning options, control strategies, and occupancy
analysis. The current state-of-the-art building simulation engines,
however, require significant manual operations and are difficult to
automate.

Users need to locate and fetch input data for the simulation. Data
must often be preprocessed, multiple time-series might have to be
merged, resampled, or converted to a different unit. Finally, they need
to be formatted according to the specific simulation engine. Usersmust
manually run a simulation, sometimes modifying the model itself to
point to the current data files, and specifying the desired simulation
period. Sharing the results with other researchers and making them
available to other applications is also problematic. Simulation results
are usually available as unstructured comma separated value (CSV)
files, which lack metadata, and are so large that are difficult to share
by email or any other traditional way. Moreover, these procedures are
specific for each simulation engine, which only adds complexity and
possibility for human errors.

In Chapter 6, a tool for automating these procedures is presented [2].
The tool can locate and fetch data from a common data storage system,
run the simulation on the desired period, and make the results avail-
able on the same data storage system. The simulation is run through
a common interface implemented by many engines, which makes it
easier to replace the model. Similarly, data is exchanged through a
common protocol that can be implemented by applications and data
storage systems. Human intervention is only necessary once, to gener-
ate an initial configuration, and the tool can regularly run simulations
on real-time data by itself.

virtual sensors

Virtual sensors are an effective method for introducing redundancy
in a system without the drawbacks of physical redundancy, such as
increased cost and complexity. They are especially useful in ventilation
units, where many sensors are available, though rarely duplicated.
Some authors applied virtual sensors in building systems in the past,
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however, they are often used for observing unmeasured quantities
rather than for diagnostics.

In Chapter 7, a method for creating virtual sensors in ventilation
units using linear regression from historical data is presented [3].
While model-based virtual sensors in ventilation units are available
in the literature, data-driven methods lack in this specific topic. Data-
driven methods trade accuracy for simplicity, and have the advantage
of not depending on a detailed description of the specific system. They
are, therefore, easy to deploy to different ventilation units.

This method is improved in Chapter 8 [4], where linear regression
models are extended in two orthogonal directions to account for in-
teractions not accurately representable through linear relationships.
First, by more accurately representing relationships between meas-
urements using non-linear models. Secondly, by taking into account
recent history using statistical models.

consensus-based anomaly detection

Data-driven methods are popular for FDD in building systems, as
shown in Figure 2.3 on Page 39. Their major drawback, however, is
the requirement for fault-free historical data, which is rarely available.
For this reason, they are difficult to deploy in practice.

Consensus-based methods, on the other hand, trade this require-
ment with one for multiple identical components. The aggregate beha-
viour of a group of components gobbles the small contributions from
the faulty ones and can, therefore, be used to train data-driven models.
In Chapter 9, a consensus-based method for FDD at room level is
presented [5]. The interactions between VAV units and CO2 level are
converted to a set of qualitative episodes, which are weighted with
their number of times they occur. VAV units which exhibit frequent
uncommon episodes are identified as anomalous and are flagged for
additional investigation.

Consensus-based methods are popular for control and decision
support, however, they are rarely used for FDD, especially in building
systems. Besides the specific anomaly detectionmethod, therefore, the
contribution of this chapter is to promote consensus-based methods.
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faults simulation

Ventilation units are one of the most complex and critical systems in
buildings, and often responsible for significant energy consumption.
For this reason, many researchers work on FDD methods applied to
ventilation units and their components. However, some of the com-
ponents have received more attention than others. Many publications
focus on VAV units, due to their immediate effect on indoor air dis-
tribution, on chillers and refrigeration systems, probably due to their
widespread presence in warmer climates, and on heating coils, which
are significant in colder areas. Some other components such as heat
exchangers (HXs) have instead been overlooked or even ignored in
the literature.

In Chapter 10, a rule-based method for FDD in ventilation units
is presented and specifically applied to hot-water loops and heat ex-
changers [6]. Under-performing subsystems are first isolated using
the method presented in Chapter 6, and a set of rules is then used to
diagnose the specific fault. The dynamic energy model of the building
is used to simulate faulty conditions and the method is tested on such
generated data. The impact in terms of increased energy consumption
is also reported for the selected faults.

Moreover, in the chapter, two experiments are definedwhere gradual
faults are introduced in the building. Gradual faults can be detected
before their impact becomes significant, allowing pre-emptive main-
tenance. This is a first step in the direction of faults prediction, which
aims to detect faults before they even manifest, improving mainten-
ance schedules and reducing operation disruption.
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chapter 3a hierarchical framework for
data validation and fault

detection and diagnostics in
building systems

In this chapter, the publications included in the thesis are summarized
in the context of a hierarchical framework for data validation and fault
detection in building systems.

3.1 sensors validation: a precondition to any
building application

In buildings, a large number of heterogeneous devices are used to
generate data. Physical sensors measure indoor and outdoor environ-
mental conditions such as temperature, CO2 concentration level, hu-
midity, light intensity and weather conditions. Other sensors measure
the status of building’s equipment such as valve position of variable air
volume (VAV) units and radiators, artificial light level, or thermostat’s
status. Energy meters measure the energy consumption of different
subsystems such as lighting, rooms plug load, heating, ventilation
and air conditioning (HVAC), elevators or other building’s facilities.
Where available, occupants counting camera report the number of
people who entered the monitored areas.

All buildings applications use part of the recorded data to perform
their tasks. The building management system (BMS) uses the current
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building status, sometimes augmented with weather and occupancy
forecasts, to control the actuators and activate the HVAC systems.
Forecasting applications use historical data in their model, either for
parameter estimation or for statistical and black-box model construc-
tion. Fault detection and diagnostics (FDD) applications compare the
current status of the building with the expected one to confirm that
the operations are correct. Building’s data is, therefore, a fundamental
component of every building application.

Measuring devices, however, are physical devices and are subject to
wearing, misconfiguration and failures. Therefore, the very first step
in FDD must be the validation of building’s data.

Typical physical sensors faults are the following.

Abrupt failures Sensors readings are stuck to a fixed value, which can
be plausible or implausible (e.g. negative CO2 concentration
level).

Biased output Sensors readings have a fixed offset, e.g. reported tem-
perature is always 5 ∘C higher than the actual value. This is often
caused by improper, or even entirely missing, calibration.

Precision degradation The variance of sensors readings increases, which
results in increased noise in the signal.

Data issues are not only caused by physical sensors faults, but also
by issues in the sensing infrastructure.

Data communication failures A sensing network is necessary to propag-
ate readings from the sensors’ location to a central data storage.
Such network is itself subject to faults and other issues. Net-
work nodes and connection can fail and prevent recording of
measurements from sensors.

Infrastructure misconfiguration Many components in the sensing infra-
structure have configuration parameters that can bewrong due to
mistakes in the initial configuration, or unrecorded changes over
time. Sensors’ and meters’ unit can be different from the actual
measurements, e.g. kWh when the measurement is in J. Syn-
chronization issues between subsystems can disorder time-series,
e.g. misconfigured timezone or drifting clocks.
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Sensors wrong placement Some sensors are susceptible to placement.
E.g. temperature sensors placed over a radiator would overestim-
ate the room temperature when the radiator is on. In the same
way, CO2 concentration level sensors located next to a window
would be sensitive to air drafts. Finally, large objects could shield
people from occupancy sensors, which would incorrectly record
a room as empty.

In Chapter 5, a method for sensors validation is presented. A set of
rules defining the expected characteristics of time-series are used to
define validation tests for their readings. Four tests are defined.
Range test Readings must fall within the physical range of their time-

series. E.g. indoor temperature must be within 15 ∘C to 30 ∘C,
CO2 value must be strictly positive.

Latency test In threshold-based sensors, readings are recorded with
varying frequency, which makes it difficult to detect missing data.
A maximal delay is defined for each time-series, based on the
dynamics of the system.

Spike test Due to physical constraints, the quantity measured by a
time-series cannot change too sharply in a short time. A maximal
absolute variation is defined for each time-series based on the
physical properties of the measured quantity.

Monotonicity test Some time-series record cumulative values and can
only increase over time.

3.2 a hierarchical framework for fault
detection and diagnostics

In building systems, energy enters the system at one location, and it
flows to the rest of the components through an energy distribution tree.
Separate energy meters are usually located on some of the nodes and
measure the amount of energy consumed by all nodes below them.
An example of an energy distribution tree is shown in Figure 3.1.

A dynamic energy performance model of the building is used to
simulate its behaviour, in particular, to obtain the expected energy
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Figure 3.1: An example of an energy distribution tree in a building.

consumption at each node in the energy distribution tree. The model
represents with high accuracy the physical envelope of the building,
including zone shapes, specific materials, wall sizes, and windows
location, but also the operation of all relevant subsystems, such as
HVAC, down to individual components and ducts level, lighting and
district heating. Given the weather forecast, schedule configuration
and an occupancy profile, the model can generate the expected energy
consumption, but also the expected indoor conditions.

When the building’s energy performance is close to the expectation,
the building is considered operating correctly. If, on the other hand,
the building is consuming more energy than expected, lower nodes in
the energy distribution tree are visited in order to isolate the under-
performing subsystems, as shown in Figure 3.2. Once such subsystem
is isolated, the faulty component is diagnosed using a specialized FDD
method for the specific subsystem.

The framework considers the following hierarchy of four layers.

Level 1. Whole building energy performance assessment. At the top
of the hierarchy, the overall energy performance is compared
with the expected one. If the building performs as expec-
ted, no faults are significantly affecting it. Otherwise, further
investigation must be performed.

Level 2. System level. At this level, the performance at the system level
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Figure 3.2: Hierarchy for buildings fault detection and diagnostics. Devi-
ations from expected performance are first detected at the whole build-
ing level, then the scope is restricted to under-performing system and
subsystem. The faulty component is finally diagnosed by using spe-
cialized FDD methods.
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is compared with the expected one. The affected system, such
as ventilation, lighting or heating is isolated, and the scope of
the investigation is reduced.

Level 3. Subsystem level. At this level, the specific subsystem is isol-
ated. E.g. when investigating the ventilation system, the spe-
cific unit is found or, when investigating the ventilation dis-
tribution system or the lighting system, the specific room is
found.

Level 4. Component level. At the bottom of the hierarchy, the spe-
cific faulty component is isolated. E.g. the specific sensors or
actuator inside a ventilation unit or inside a room.

Several simulation engines exist for building performance simu-
lations, such as EnergyPlus [52] or Modelica [57]. Most of them,
however, require considerable human intervention for setting up and
running the simulation. Data needs to be collected and converted to
a suitable format, the model should be configured with the specific
inputs file paths, and output results must be manually shared.

In Chapter 6, a tool is developed for automating these procedures.
The tool uses two standard interfaces: the simple measurement and
actuation profile (sMAP) for data acquisition and publishing, and
the functional mock-up interface (FMI) for abstracting the simulation
execution. After preparing an initial configuration, the tool can run
periodically, e.g. once per day, and generate the results in a common
data storage.

3.3 artificial redundancy with virtual
sensors

A system has redundancy when multiple components serve the same
purpose, and the system could continue operating when one of them
is not working. This concept can refer to actuators, sensors, and other
equipment. E.g. in a system with two fans, if one is broken, the other
is still able to achieve the same airflow, even if at a lower efficiency. In
sensing equipment, redundancy makes it possible to validate readings
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among a group of sensors. E.g. if the temperature is measured by two
sensors, they must agree, otherwise, one of them is faulty.

Redundancy is an effective resource for FDD, however, physically
duplicating sensors and actuators is seldom feasible. Additional com-
ponents increase the cost, and sometimes physical constraints such as
size prevent to achieve physical redundancy.

Virtual sensors, on the other hand, have no additional cost and are
not subject to physical constraint. A virtual sensor consists of a model
which computes its readings from other inputs, i.e.

S′ = f (S0,S1, … , Sn).

Virtual sensors have two main purposes, i.e. observation and dia-
gnostics. In the former, a virtual sensor is designed to estimate a
quantity that is not, or cannot, be measured. E.g. there are no sensors
which can measure the efficiency of an engine, however, a virtual
sensor could estimate it, by comparing the generated physical work
with the consumed energy. In the latter, a virtual sensor is designed to
estimate the same quantity of a physical sensor and, therefore, validate
its readings.

In Chapter 7, a method for designing virtual sensors inside vent-
ilation units is presented. Ventilation units contain several physical
sensors and, therefore, are good candidates for deploying additional
virtual sensors. The quantities measured from each physical sensor
are not completely independent, instead, they are correlated with each
other.

Virtual sensors are constructed to replicate the values of existing
sensors. Virtual readings are computed from linear regression models
using other sensors as input. Three physical sensors are considered,
i.e. temperature, fan speed and airflow and, for each of them, two
virtual sensors are constructed using different inputs.

Two different metrics are defined to determine whether two sensors
deviate from each other, i.e. the coefficient of determination and ac-
ceptable intervals. The coefficient of determination is a measure of
how much a linear model fits the real data. Higher values indicate
that the virtual sensor closely follows the physical ones and, therefore

57



3 A Hierarchical Framework for FDD

their readings agree. Values close to zero, on the other hand, indicate
that the two sensors disagree.

In acceptable intervals, virtual sensors are configured to return a
band instead of a single reading. If the values from the physical sensor
fall within such band, the two sensors agree, otherwise, they disagree.
The width of the band is computed using the maximal error obtained
during the training phase.

In Chapter 8, the same method is improved using non-linear re-
gression models and statistical models. The two alternatives improve
linear regression models along two different directions. In the former
case, more complex dynamics between simultaneous readings from
other sensors can be represented using non-linear relationships. In the
latter case, linear regression models are augmented with the recent
history of the duplicated sensor.

3.4 consensus-based anomaly detection
Data-drivenmethods havemany advantages, e.g. they do not require a
detailed understanding of the system under test and they can be easily
generalized and adapted to different systems. They have, however,
one major drawback. Namely, they require fault-free historical data,
which is seldom available in real systems. This makes it difficult to
deploy those methods in practice.

When a system consists of multiple identical or similar components,
however, a different approach is possible. Assuming the majority of
the components is working correctly and only a small part of them are
faulty, aggregate historical data can be used for training data-driven
models. The contribution of the faulty components is diluted among
the healthy ones and it will not affect the resultingmodel, as illustrated
in Figure 3.3. Moreover, faulty components can be isolated because
their behaviour differs from the aggregate consensus.

In Chapter 9, a consensus-based method for anomaly detection on
air distribution systems is presented. The air distribution system is
a good candidate for consensus-based methods, since VAV units and
rooms are often similar in size and operations. Even when rooms are
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Identical systems Episodes database

Two faulty systems
out of twelve

Aggregate Behaviour

Figure 3.3: Effect of faulty systems in consensus-based methods. If a small
number of systems used in training are faulty, their contributions will
be diluted among the ones by correctly operating systems.

not completely identical, it is at least possible to find groups of similar
rooms depending on some measure such as the following.

Grouping by room type Rooms of the same type such as offices, confer-
ence rooms, kitchens or corridors, have similar size and usage
patterns.

Grouping by location Rooms in the same location may be subject to the
same external interferences. E.g. rooms on the same side of the
building have the same solar radiation patterns, and rooms on
the same floor have similar insulation due to other floors.

Grouping by related subsystem Sometimes different groups of rooms
are related to different subsystems, such as ventilation shafts
or lighting floor structure.

Time-series data related to the air distribution system, i.e. room CO2
concentration level and VAV unit position, are preprocessed to extract
qualitative events and episodes. A database of common episodes is
generated and updated over time. Rooms whose VAV units often
exhibit uncommon episodes are flagged as anomalous.

In order to avoid classifying as anomalous rooms which are actu-
ally belonging to a different group, two instances of the method are
executed. In one, rooms are grouped by ventilation unit, in the other,
rooms are grouped by type. The same rooms are flagged as anomalous
in both experiments.
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3.5 faults simulation and impact assessment
Buildings are large, complex and, in particular, expensive systems.
Testing FDD methods on building systems is difficult, since it is rarely
feasible to artificially cause faults without disrupting the normal activ-
ities and operations in the buildings. A popular approach, instead, is
to use a model of the system to simulate its behaviour when affected
by faults.

In Chapter 10, a method for FDD on ventilation units is presented
and tested on a model of a real building. A dynamic energy perform-
ance model of the building is used for simulating the behaviour of
the building. Five experiments are designed and, in each of them, a
specific fault is introduced in the unit by modifying parameters in
the model. A set of rules is used to validate the operation of each
component.

Twodifferent types of faultswere considered, i.e. abrupt and gradual
faults. In abrupt faults, there is no transition between the healthy
and faulty conditions. In gradual faults, on the other hand, the fault
intensity increases gradually over time.

In addition to that, the dynamic energy performance model is also
used to assess the impact of faults on the building’s energy consump-
tion. This gives insights on the effect of faults, both in relative and
absolute terms. Some of the faults considered do not visibly change
the building’s energy consumption, while others have a significant
impact.
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Odense undervisning 44 (OU44) is a recently constructed building at
the University of Southern Denmark [7], and it has been the main case
study for the project COORDICY, this thesis, and for all publications
included in this thesis. The building, shown in Figure 4.1, is located at
the main university campus, in Odense, Denmark. It was built in 2015,
and it was designed to comply with European 20 20 goals for nearly
zero-energy buildings [21]. The building, whose characteristics are
shown in Table 4.1, consists of three floors plus a basement and it is
mainly used for teaching and office work. It contains over 200 rooms
between classrooms, study areas, auditoriums and offices, and around
1000 people visit it on weekdays to attend classes, join study groups
or work at their offices. An 80m2 large system of photovoltaic panels
with a power capacity of 12 kW is located on the roof of the building,
and the generated electricity is used to reduce the amount absorbed
from the distribution grid.

Ventilation is provided by 4 ventilation units, and a building man-
agement system (BMS) controls the indoor climate to maintain a good
comfort level for occupants. Indoor air quality ismeasured byCO2 con-
centration level and the air is circulated to maintain such level below
national regulations. The indoor temperature is controlled through
ventilation air temperature, which is heated through a district heat-
ing hot water loop. In addition to that, several rooms have radiators,
which are also heated up using district heating. During warm months,
ventilation is also used to provide natural cooling to the building by
using outdoor air.

61



4 Case Study: Building OU44

Figure 4.1: Building OU44 at University of Southern Denmark, campus
Odense.

Table 4.1: Characteristics of building OU44.

Construction Year 2015
Total Area 8000m2

Floors 4
Rooms 135
Study Areas 8
Classrooms 19
Offices 48
Ventilation Units 4
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4.1 data collection
From the data collection perspective, the building is divided into the
following three main subsystems.

– Room-level data;
– ventilation unit data;
– energy meters data.

Measurements at room level are collected through a KNX bus [58]
from several sensors such as indoor climate, i.e.

– temperature [∘C],
– CO2 concentration level [ppm],
– light intensity [lx],

and room usage sensors, i.e.

– occupancy [boolean];
– booking [boolean].

Additional sensors are available for ventilation and radiators signals
and statuses, shader position and lighting configuration. Some rooms
have additional meters and sensors such as separate meters for plug
load or relative humidity sensors. Rooms on the ground floor have
window opening sensors, however, those are only used for security
monitoring, and not for operation control. A weather station, located
on the external hull of the building, records temperature, wind speed,
solar radiation, and rain intensity.

Data in the ventilation subsystem are available through the BMS.
Two classes of data are collected, i.e. room-level data, which is replic-
ated from the room-level subsystem, and data from the ventilation
units themselves. The building contains several energy meters that
record the energy consumption at different aggregation levels, both
for electricity and district heating, represented as energy distribution
trees in Figures 4.2 and 4.3. All energy meters are accessible through
an EnergyKey system.

Furthermore, 17 3D stereo vision occupants counting cameras are
installed at the entrances of the building, in corridors and in four
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selected test rooms. Those cameras track people crossing the entrances
of rooms and floors and provide an estimate of the number people
occupying those areas.

Those subsystems have heterogeneous interfaces, however, building
drivers continuously gather data from them and publish them to a
centralized data storage using the simple measurement and actuation
profile (sMAP) protocol. Therefore, data is accessible through a stand-
ard interface and available to several applications such as occupancy
prediction [59] and model development and calibration [60].

4.2 ventilation system
Building OU44 contains four identical ventilation units, each of which
serves one of its vertical corners: north-west, north-east, south-west,
south-east. Figure 4.4 shows a schematic diagram of a ventilation unit.
Air circulates from outside to the building, and outside again, through
twomain ducts, pushed by two fans located in each duct. In the figure,
air enters the building from the lower-left corner, goes through a filter,
and through a heat exchanger (HX), then it is heated up by a heater
and, finally, it enters the supply shaft, from which it will circulate
to the rooms. On the way back, air leaves the rooms and enters the
extract shaft, it goes through a filter and through the heat exchanger
and, finally, it is pushed out of the building. The heat exchanger is
used to recover heat from exhaust air, in order to reduce the energy
required to heat up inlet air through the heater. Sensors record several
measurements inside the ventilation unit, such as air flow, pressure,
temperature, humidity, fan speed, and electrical consumption, at five
main locations: inlet, post-HX, supply, extract, and exhaust.

The heater, shown in detail in Figure 4.5, uses a hot-water heating
loop coming from district heating to heat up incoming air. Sensors and
energymeters recordwater flow, incoming and outgoing temperatures,
and thermal energy consumption.

From the main supply shaft, air enters individual rooms through
variable air volume (VAV) units, as shown in Figure 4.6. Each room in-
dependently opens its VAV unit according to the required ventilation,
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Whole
Building HVAC Ventilation Unit 1

Ventilation Unit 2

Ventilation Unit 3

Ventilation Unit 4

Misc Elevator

UPS

Floors Basement

Ground Floor South

North

First Floor South

North

Parterre South

North

Roof

Figure 4.2: Electrical energy distribution tree in building OU44. Meters in
italic do not exist as independent meters, but they can be obtained by
aggregating their children.
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Whole
Building HVAC Ventilation Unit 1

Ventilation Unit 2

Ventilation Unit 3

Ventilation Unit 4

Radiators East

West

Floor Heating Basement

Air Wall

Water Heater

Figure 4.3: District heating distribution tree in building OU44. Meters in
italic do not exist as independent meters, but they can be obtained by
aggregating their children.

which depends on both air quality, measured by CO2 concentration
level, and temperature. When CO2 level reaches the thresholds of
600 ppm, 750 ppm and 900ppm, the VAV unit opens by 45%, 70%
and 100%. On the way down, a 100 ppm hysteresis is used to avoid
frequent movement of VAV units. VAV units are also controlled by
temperature. Their position is increased gradually when the temperat-
ure is above the threshold to increase the intake of outdoor air, which
results in natural cooling.
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Figure 4.4: Ventilation unit in building OU44. Air enters the building, goes
through a heat exchanger, it is heated up, and enters the main shaft
fromwhich it circulates the building. On the way out, heat is recovered
from exhaust air to reduce the energy required by the hot-water heating
loop.
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Figure 4.5: Hot-water heating loop in building OU44.
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Figure 4.6: Ventilation shafts in building OU44. Air enters the room from the
supply shaft and leaves to the extract shaft. Supply and extract VAV
dampers are synchronized, i.e. they are always open at the same level.
Dampers in different rooms are independent.

4.3 energy model of the building
A detailed dynamic energy model of the building was developed for
building OU44 [7]. The model, whose 3D rendering is shown in Fig-
ure 4.7 against a picture of the building, can be used to simulate the
behaviour of the building according to weather conditions and occu-
pancy schedules, using the simulation engine EnergyPlus. EnergyPlus
is an industry standard tool for simulation of building performance,
developed at Lawrence Berkeley National Laboratory in the United
States of America (USA) [52].

Building details were initially obtained from the building informa-
tion model (BIM) provided by the constructor. At first, the geometry
of the building was replicated in the Sketchup Pro software. Structural
entities, such as the main envelope, rooms and corridors, were accur-
ately represented in themodel. UsingOpenStudio plugin for Sketchup
Pro, the model was augmented with information about the technical
systems, such as ventilation components, system loads and operation
schedules. Finally, the model was exported as an EnergyPlus model in
the form of an Energy Plus input (IDF) file, including other character-
istics, such as CO2 and temperature sensors, operational setpoints and
other parameters. Several iterations of this pipeline were performed,
until a complete and accurate model was obtained.
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Figure 4.7: Building OU44 and its energy model.
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Figures and tables were minimally edited to fit the layout of this
thesis, and they are otherwise identical to the ones in aforementioned
publications. Text was copied verbatim, except for bibliography refer-
ence numbers and styles which are kept uniform for the entire thesis,
and for minor spelling adaptations and corrections.

A local bibliography is reported at the end of each chapter, listing
all references cited in the corresponding publication. All references
are also repeated in the global bibliography at the end of this thesis,
on page 261.
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chapter 5sensors validation: a
precondition to any building

application
This chapter is a cosmetic adaptation of the following conference paper.

Claudio Giovanni Mattera, Sanja Lazarova-Molnar, Hamid Reza
Shaker and Bo Nørregaard Jørgensen. ‘A Practical Approach to Valid-
ation of Buildings’ Sensor Data: a Commissioning Experience Report’.
In: Third International Conference on Big Data Computing Service and Ap-
plications (BigDataService) (San Francisco, CA,USA, 6th–9thApr. 2017).
IEEE. 12th June 2017, pp. 287–292. doi: 10.1109/BigDataService.
2017.48

The paper was presented at the IEEE Third International Conference
on Big Data Computing Service and Applications in San Francisco,
USA, on Sunday 9 April 2017.

abstract
Often manually performed commissioning processes on building’s
sensors fail to systematically validate that all building’s sensors op-
erate correctly. This is so because manual processes are tedious and
only inspect a limited number of sensors. As a result, sensors are
often uncalibrated, biased or somehow faulty, impacting building’s
behaviour, comfort level and energy usage.

We present a practical approach to automatically validate data from
all building’s sensors. We designed and implemented four different
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5 Sensors Validation

tests to detect out-of-range values, spikes, latency issues and non-
monotonous values. Our tests are based on expert knowledge and do
not need historical data.

We ran the validation tests on a newly constructed building at the
campus of the University of Southern Denmark. As a result we iden-
tified two types of faulty behaviours in the building’s sensors: CO2
sensors reporting biased values and temperature sensors’ readings
exhibiting high latency.

We show how automatic data validation for building sensors en-
hances the processes of detecting issues which could severely impact
building’s operations, and were otherwise going unnoticed. Thus, we
emphasize the importance of performing data validation as a necessity
for a correct building operation.

5.1 introduction
In the past several years buildings have become more and more intel-
ligent [61]. Complex building management systems (BMSs), often,
manage buildings in their entirety: ventilation, heating, lighting, and
other relevant subsystems. To operate, a BMS requires access to the
status of the corresponding building, both at room level and at coarser
levels. For instance, when the CO2 concentration levels in a zone are
too high, the ventilation is turned on to improve the air quality. Simil-
arly, when the temperature in a room is below its setpoint, the heating
is turned on, and when a room has been empty for a certain period,
the lights are turned off.

The status of a building is sampled by an increasingly large number
and variety of sensors: CO2, temperature, air flow, water flow, humid-
ity, light intensity, occupancy, energy meters, etc. If data collected
from a building is incorrect, it would impact the correct operation of
the corresponding BMS. If a BMS is fed low quality data, it would
produce low quality results. It is, therefore, important to perform data
validation to ensure that the quality meets the requirements.

Nevertheless, in many buildings no systematic validation is per-
formed before they are handed over to final users, even if basic tests
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do not require complex setups. Facility management personnel manu-
ally validate only a small subset of all sensors and might assume that
the data is correct and that the building’s systems are operating cor-
rectly, as well as mistake data issues with system issues. E.g. they
might blame the BMS for not handling heating correctly when it is the
temperature sensors that are producing lower values than real.

In this paper we propose a series of practical data validation tests
that can be automatically performed on new buildings, regardless
of how data is collected, and further customized. We report the ap-
plication and testing of this approach on a real case study building.
We, furthermore, discuss the identified building’s issues and their
implications on the building’s operations and performance.

Most research papers on data validation make use of simulated
data [62, 63, 64, 65, 66, 67], real data with simulated faults (e.g. by
adding a fixed amount to model a biased sensor) [68, 69, 70, 71, 72] or
real data with artificially induced faults (e.g. by manually blocking a
valve) [73, 74]. In this paper we document the testing of our proposed
method on real data from our case-study building, through which
we identified significant faults. We informed the facility management
team about the discovered faults and they, subsequently, attended to
them. Furthermore, we adapted tests existing in literature to threshold-
based sensors.

The rest of the paper is organized as follows. The current state of the
art is reviewed in Section 5.2. The data validation tests are introduced
in Section 5.3. Section 5.4 presents the case study and discusses results
and implications. Finally, conclusions are drawn in Section 5.5.

5.2 related work

5.2.1 data validation: overview and classifications
Data validation belongs to the more general field of fault detection
and diagnostics (FDD), on which depends successful operation and
performance of smart buildings [75]. FDDmethods analyze data from
buildings to detect and identify faults. The basis for any higher level
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FDD approach is correct data, implying that data validation must be
the very first step.

Erroneous data is caused by faults in themeasuring processes, when
collected data points do not adequately represent the measurements.
On the other hand, datamay appear faultywhile correctly representing
a faulty system, and it is therefore important to avoid misdetecting
one for the other [70]. E.g. a too low temperature record can be caused
by a biased sensor or by a broken heating unit.

Similarly to one classification of FDDmethods, data validationmeth-
ods can be divided in three groups: model-basedmethods, data-driven
methods and rule-based methods [39]. Model-based methods use
physical knowledge of the system to produce estimate data points
and compare them with measured ones. Data-driven methods rely
on fault-free historical data which is used to learn a black-box model
of the system. Rule-based methods checks whether rules obtained
through expert knowledge hold for sampled sensors data.

Model-basedmethods need to be designed and tuned for the system
under test, therefore they are often too complex or too expensive to
set up. Data-driven methods are more flexible and easier to adapt but
require flawless historical data, which is not always available. Methods
based on expert knowledge do not require neither detailed models nor
historical data: they are therefore suitable to be deployed on buildings
during the commissioning, when no data has been recorded yet or it
has not been validated, i.e. methods in this group are the initial step
to establish ground truths.

Another way to differentiate data validation methods is whether
they consider single or multiple data streams. Methods in the first
group are flexible and can be adapted to many kinds of streams. Meth-
ods in the second group exploit correlations between different streams
and potentially allow validating complex interactions, but they require
either redundancy—sensors in similar environments should report
similar values—or historical data—from which patterns are extracted
and compared with real time data.

Table 5.1 showswhich of the reviewedmethods belong to each group.
Themethod proposed in this paper belongs to the upper left cell, it con-
siders single data streams and assumes no historical data is available.
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Table 5.1: Related work in the different groups.

No historical data Historical data

Single streams [76, 77, 78, 62, 63, 79,
80, 72, 81, 73] [76, 77, 78, 82, 73]

Multiple streams [70] [76, 77, 68, 69, 71, 64,
74, 65, 66, 67]

5.2.2 state of the art
In the following we summarize the state of the art of relevant advances
in data validation. We begin by a general overview, followed by a
focus on data-driven methods, and finally we review the remaining
significant approaches.

general overview

Siao et al. present a literature review on data validation methods.
Simple tests include physical range check based on sensor’s range;
local realistic range, based on sensor’s location and condition, pos-
sibly obtained through statistical analysis; gaps detection; flat lines
detection; gradient test; tolerance band methods; and physical re-
dundancy checks. More complex tests include statistical analysis to
detect outliers, drift detection using exponential weighted moving
average methods, spatial consistency methods, analytical redundancy
(to check quantities correlated in a physical model), gross error de-
tection, multivariate statistical methods (e.g. principal component
analysis (PCA)) and data mining techniques [83].

Pires et al. present a review and classification of data validation
methods used for mobile health applications. The authors divide
those methods in three groups: faulty data detection methods, data
correction methods, and other assisting techniques or tools dealing
with hardware errors [84].

Cugueró-Escofet et al. identify 6 levels of data validation tests—com-
munications, physical range, trend, equipment state, spatial consist-
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ency and time series consistency—divided in low and high level tests.
Low level tests concern a single sensor, while high level tests exploits
correlation among different sensors. The tests, obtained from ex-
pert knowledge, are applied in sequence to incoming data which is
scored accordingly. In case one or more tests fail, a data reconstruction
method is used to produce valid data [78].

Branisavljević et al. consider an ordered sequence of validationmeth-
ods to be applied to data: detection of zero values, detection of constant
values, range check for physical limits, range check for historical limits,
statistical univariate test, statistical multivariate tests, artificial neural
network (ANN), non-linear models, SVM and physical model. Data is
augmented with contextual information (part of day and weather con-
ditions) and validationmethods perform better when tuned separately
on each class [76].

data-driven methods

Castello et al. present two applications to handle data validation and
correction and data provenance for buildings. Provenance includes
information about the transformations through which data undergo
(unit conversion, resampling and filtering). The authors present three
experimental buildings as case studies [77].

Hou et al. propose a combined rough sets and ANN method for
detecting biases on HVAC chillers. Several rules are defined to split
data in subsets corresponding to different operating conditions, and
historical fault-free data is used to train ANNs for each subset. The
ANNs compute then an estimate confidence interval for the bias [68].

Sharifi et al. propose a MPPCA model for non-linear sensor faults
detection. The input space is divided in few locally linear regions and
on each of them a PPCA model is trained. When a new measurement
is available, it is first mapped to the correct region and then validated.
A drawback of the proposed method is that in case of large error it is
difficult to obtain the correct region and, therefore, to correctly isolate
the fault [74].

Tsang et al. propose a method to validate sensor data using poly-
nomial predictive filter and fuzzy logic. Three sets of fuzzy rules are
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considered: data is in range, data frequency is in range, and data vari-
ance satisfies the F-ratio test. Polynomial predictive filter is applied
to historical data to obtain estimates for the rules’ lower and upper
bounds [73].

model-based and rule-based methods

Tsang proposes a gray model method for sensor data validation. The
authors consider three fault indicators: limit indicator, where a signal
or its rate of change are out of prescribed bounds, jump indicator,
when there is a sudden change in the signal corresponding to a spike,
and noise indicator, when there is a change in the predicted signal’s
error [81].

Näsi et al. propose fuzzy limits centered on the signal’s current
mean to identify outliers within the range limits. The authors compare
distribution-based and density-based limits, showing that the latter
are less sensitive to non-evenly divided values. Adaptive fuzzy limits
contain a damping term based on distance from the average, in order
to prevent the outliers to affect the limits [79, 80].

5.3 validation of sensors and meters data
The methodology presented in this paper is mostly inspired by the
M1–M3 tests from [76], threshold-based tests from [77] and level 0–2
tests from [78]. Implementations from these papers were not available
to deploy on our building. Moreover, the mentioned approaches
assumed sensors can be sampled with constant frequency, which was
not the case in our setup. Therefore, we designed and implemented
our own methodology.

Sensors perform measurements and make them available to the
BMS. We assume sensors to be threshold-based, i.e., to continuously
sense values and produce a new reading only when the difference
from the previous one is larger than a threshold (see Figure 5.1). Rate-
of-change tests, while popular in literature [62, 63, 71, 79, 80, 72, 81, 73],
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Figure 5.1: Threshold-based sensors produce a new reading when the differ-
ence from the previous value is larger than a threshold (1 ∘C).

are ineffective for threshold-based sensors, since their rate-of-change
is constant (± the threshold).

We define the following terms:

Value the physical value sensed by a sensor;
Reading the act of receiving a value from a sensor;
Record a pair (t, v), denoting a reading at instant t with reported

value v;
Sensor threshold difference between the current value and the last re-

cord needed for a sensor to make a new reading.

Figure 5.2 shows an overview of the data path in our system. When a
reading happens on a sensor, a record is stored on the BMS. Over time
a sensor produces a time series of records [(t0, v0) , (t1, v1) , (t2, v2) , … ].
A driver is a program running on the BMS which forwards readings
to a centralized data storage. Validation tests are performed on all
incoming records going to the data storage.

5.3.1 validation tests
We implemented four different tests to validate records from the build-
ing sensors: range, latency, spikes and monotonicity. Each test can
detect different issues (Table 5.2).
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Sensor BMS Driver Storage

Validation

Figure 5.2: Data validation flowchart. Sensors push records to the BMS. A
driver collects records from the BMS and forwards it to a centralized
data storage, on which validation is performed.

range test

Sensors from the building measure different physical quantities, e.g.
CO2 concentration level in the air, light intensity in rooms, temperat-
ure of air in rooms or in ventilation units or temperature of water in
the heating system and humidity in rooms. Most of these quantities
should have measure within a given range. E.g. in normal rooms CO2
concentration level cannot be lower than in atmosphere and air tem-
perature should be within comfort level range. Sensible ranges can be
obtained for many of the measured quantities from expert knowledge,
sensors data sheets and validated historical data. Given upper and
lower bounds vmin and vmax the record (t, v) is labeled as erroneous if
v ⪇ vmin ∨ v ⪈ vmax.

Table 5.2: Issues detected by each test.

Issue \ Test Range Latency Spikes Monotonicity

Sensor bias ✓
Misplaced sensor ✓ ✓

Driver fault ✓ ✓ ✓
Accuracy degradation ✓

Communication problem ✓ ✓
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latency test

For threshold-based sensors at any time the uncertainty of a measure
is twice the sensor-threshold. Long periods without a reading can
be caused by a decrease in sensor accuracy, a sensor hard failure,
communication problems or BMS failure.

Given a maximal latency Δtmax and two consecutive records (t0, v0)
and (t1, v1) the former record is labeled as erroneous if t1 − t0 > Δtmax.
For this test it is not the records themselves which are erroneous, but
the interval between them. More readings were expected between t0
and t1, therefore the record (t0, v0) was labeled as erroneous, since it
is not known until when its value can be trusted.

spikes test

A spike is a large variation in a very short time window. Occasionally
a driver may fail to parse a record from the BMS, or the sensor itself
can generate an erroneous value. Typical examples are zero, negative
numbers, or random numbers. Sometimes spikes are invalid values
(e.g. a negative CO2 concentration level) which are easy to filter out,
but they can also be valid (e.g. temperature can be negative).

A naïve way to check for spikes is to check when the difference
between two consecutive records is above a given threshold. This is
however susceptible to false positives: for instance, if the building’s
communication network was down for a short period of time the first
record after it is back on line might be significantly different from the
previous one, but this should not be considered a spike. Given the
parameters δv and δt and two consecutive records (t0, v0) and (t1, v1),
the latter record is labeled as a spike if

v1 − v0
t1 − t0

>
δv
δt

. (5.1)

monotonicity test

Some meters, in particular energy meters that record the total en-
ergy consumption, record an incremental quantity. Such values are
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monotonically increasing, as it is not possible to recover previously
consumed energy, and therefore every record value must be greater
or equal to the previous one. Given two consecutive records (t0, v0)
and (t1, v1) the latter record is labeled as erroneous if v1 ≱ v0.

5.4 case study
In this paper we present building Odense undervisning 44 (OU44) as
a case study. The building is located on the campus of the University
of Southern Denmark. It contains classrooms, offices and study rooms,
it has been operating and collecting data since October 2015.

Every room has the following sensors:

– Temperature [∘C], relevant for heating and ventilation;
– CO2 [ppm], relevant for ventilation;
– PIR [boolean], room occupancy;
– Light [lx], relevant for automatic lighting control.

Some rooms have additional sensors or meters. For instance some
have separate meters for plug load or sensors for humidity. Four
rooms are equipped with occupancy counting cameras that provide
an estimate of people in the room. In addition to that, the building has
a weather station that records external temperature, wind speed, rain
and solar radiation. There are also several energy meters: for heating,
ventilation, hot water, lighting, plug load, usually aggregate by floor
or area.

All sensors are accessible through a KNX bus [58] and broadcast
records to the BMS according to their configuration. Custom drivers
fetch data from the BMS and publish it to a centralized data base using
simple measurement and actuation profile (sMAP) protocol, so that it
is available to other applications, like occupancy prediction [59] and
model development and calibration [60].

Validation tests were executed on all the available rooms for a num-
ber of selected sensors and meters. Table 5.3 shows a summary of
the tests and the sensors along with the corresponding parameters.
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Table 5.3: Implemented tests parameters.

Test \ Sensor Temperature Humidity CO2 Energy Meter

Range 10–40 ∘C 0–100% 350–1200 ppm
Latency 180min 20min 10min
Spikes 20 ∘C in 5min 5% in 10min 300 ppm in 10min
Monotonicity Yes

Table 5.4: Number of streams and average frequency.

Temperature Humidity CO2 Energy Meter

Number of streams 140 10 231 88
Average frequency 30min 5 s 5min 1min

Details about number of streams and average frequency are shown in
Table 5.4.

5.4.1 results
results for co2 sensors

Figure 5.3 shows spikes test violations for CO2 concentration level
for selected room and period. Some spikes have value zero, which is
impossible for CO2, while some other spikes have unusually large, but
in principle plausible, values.

Figure 5.4 shows latency test violations for CO2 concentration level
for a selected room and a time period. There are two intervals with
missing data due to a driver crash. The data was, however, still avail-
able on the BMS, although not yet forwarded to the storage.

Figure 5.5 shows range test violations for CO2 concentration level for
a selected room and a time period. Results for most of the rooms in the
building are similar to these. For the given room, the CO2 sensor was
reporting CO2 concentration levels lower than the current atmospheric
level. The CO2 sensors have an accuracy of ±125 ppm, therefore, some
violations were expected when the CO2 concentration level was close
to the minimum. However, records were consistently below range
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Figure 5.4: Latency test violations for CO2 concentration level.
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Figure 5.5: Range test violations for CO2 concentration level.

nearly all the time, sometimes for several days, which suggests these
sensors are faulty.

results for temperature sensors

Figure 5.6 shows latency test violations for temperature measurements
for a selected room and time period. Even if the maximal latency
was rather large (180min), there were many erroneous intervals. The
sensor-threshold in the sensor was set to 0.1 ∘C, so more frequent
readings were expected. However, most of the faults occurred during
the night, when the room was empty and temperature should stay
close to the setpoint. It is also possible that boxes enclosing sensors
isolate them toomuch from the environment and they, therefore, shield
them from high-frequency variations.

Figure 5.7 shows range test violations for temperature for selected
room and period. For a short time during the night the temperature
dropped below the lower bound. Since this was an isolated instance,
it occurred during the night and the temperature went back to the
setpoint in the morning, it might suggest that a window was left open
during the night.
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Figure 5.8: Range test violations for CO2 concentration level after sensors
were replaced.

5.4.2 implications and discussion
After the CO2 sensors’ faults were detected, the supplier replaced the
sensors. The range test violations for CO2 after the replacement are
shown in Figure 5.8 (in the same room of Figure 5.5). There were still
few intervals below the minimum range, but they happened when
the CO2 concentration level was close to the minimum, and they are
therefore expected due to the sensor accuracy (±125 ppm).

To summarize, running the tests on the building led us to detecting
two particular faults:

– many CO2 sensors were often below their minimal range,
– for some temperature sensors new readings occurred with a very

high latency.
Further investigation showed that CO2 sensors were biased, mostly to
a lower value. The BMS uses these records to determine when to turn
on ventilation, therefore, this fault resulted in bad air quality in the
building and lower ventilation energy consumption.

Additional exploration helped in discovering that for some temper-
ature sensors (especially the ones in the weather station) the sensor-
threshold is too large, up to 1 ∘C, which means that the accuracy of
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temperature is 2 ∘C and smaller variations are not recorded. This con-
figuration is probably due to constraints on the KNX bus bandwidth,
which supports a relatively small number of simultaneously transmit-
ting sensors. The effects of decreasing the sensor-threshold need to be
investigated.

5.5 conclusions

We presented a sensor data validation approach that was designed
and developed driven by the real need of our research project, aimed
at improving smart buildings’ energy efficiency. The data validation
tests performed on the project’s case-study building exposed at least
two faults: CO2 sensors "out of range" and temperature sensors show-
ing high latency. CO2 sensors bias impacted the ventilation system
and other ongoing research projects regarding model calibration and
parameter estimation on the building [85], and the issue was detected
only after few months. Temperature sensors’ high latency might have
impacted model calibration as well. If those tests had being running
earlier during the commissioning phase, a long period of ventilation
issues could have been avoided and bus limitations could have been
addressed.

This experience showed that validating sensors values in new build-
ings is indeed an essential necessity for a correct building operation.
Expert knowledge based practical tests for single streams are sufficient
to expose issues with sensors and meters that greatly affect building’s
performance.

Automated testing of single streams is the first step in data validation.
Such tests, however, can only detect a subset of faults and issues.
Moreover, expert knowledge is necessary to set the appropriate test
parameters. Our future work in this problem domain anticipates
utilizing peer validation and exploiting interactions between different
data streams with more advanced data validation methods. Once
quality of historical data is ensured, our focus will be on data-driven
methods.
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chapter 6identifying faulty subsystems
with online energy simulator

This chapter is a cosmetic adaptation of the following journal paper.
Claudio Giovanni Mattera, Muhyiddine Jradi and Hamid Reza

�

Shaker. ‘Online Energy Simulator for Building Fault Detection and
Diagnostics Using Dynamic Energy Performance Model’. In: Interna-
tional Journal of Low-Carbon Technologies 13.3 (17th May 2018), pp. 231–
239. issn: 1748-1325. doi: 10.1093/ijlct/cty019

abstract

Faults in building systems affect energy efficiency and occupancy com-
fort. Simulating building behaviour and comparing it with measured
data allows to detect discrepancies due to faults.

We propose a methodology to recursively compare actual data with
dynamic energy simulations at different layers of aggregation to re-
duce the scope in searching for faults through the development the
online energy simulator, a tool to set up automated simulations us-
ing standard interfaces usable with different building systems and
simulation engines.

We test our simulator on a real building at the University of South-
ern Denmark, showing how continuous monitoring allows to quickly
detect and identify buildings faults.

99

https://doi.org/10.1093/ijlct/cty019
https://doi.org/10.1093/ijlct/cty019


6 Online Energy Simulator

6.1 introduction
Buildings are responsible for a large portion of energy consumption.
In the U. S. A. they accounted for 7% of primary energy consump-
tion in 2010, which is more than transportation and industrial sector.
Buildings energy consumption is also rapidly increasing over time,
doubling from 1290 TWh in 1980 to 2784 TWh in 2010 [16]. In the
European Union buildings account for 40% of the total energy used
and 36% of the total CO2 emissions [12]. Thus, the focus on buildings
is fundamental to achieve the energy efficiency and environmental
objectives, such as the European goal of saving 20% of primary en-
ergy consumption by 2020 compared to projections [86], and 30% by
2030 [22].

Modern buildings have complex control systems that monitor the
current status and manage heating, cooling, ventilation and lighting.
Each one of these subsystems has also increasing complexity, and
can, therefore, suffer from faults and malfunctions. Faults can impact
occupancy comfort, e.g. a broken radiator would result in a cold room,
but can also yield higher energy consumption. It is estimated that in
2009 the most common faults in U. S. A. commercial buildings were
responsible for over $ 3.3 billion in energy waste [36].

Without a continuous monitoring of the building, faults can happen
and go undetected for a long time. Moreover, many fault detection
methods rely on detecting changes from previous behaviour, and are,
therefore, ineffective in detecting faults present since the construction
of the building. Energy models of the buildings can be developed and
used to assess that the actual energy consumption follows the design
goals by simulating the building’s behaviour. Static energy models
are simpler and require low computational power but assume steady-
state conditions and require simplifications. Dynamic energy models
are instead more complex both to develop and to simulate but can
accurately capture interactions between components and changes over
time.

In this paper we propose a methodology for fault detection and
diagnostics (FDD) in buildings using energy models simulations and
comparing with real building at different aggregation layers. We
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present a software solution to automate simulations without relying
on any manual procedure. Our tool uses industry standard interfaces
to support different simulation engines and automatic data retrieval
from the building. We then report the application and testing of our
method and tool on a real case-study building.

Our tool was developed under the COORDICY Project, a strategic
DK-US interdisciplinary research project for advancing ICT-driven
research and innovation in energy efficiency of public and commercial
buildings [87]. We use our tool to monitor the daily energy usage of
our case-study building at several aggregation layers, such as whole
building, by subsystem or by floor.

The rest of the paper is organized as follows. The state of the art is
reviewed in Section 6.2. The FDD methodology is introduced in Sec-
tion 6.3 and the online energy simulator in Section 6.4. Section 6.5
presents the case study and discusses results and implications. Finally,
conclusions are drawn in Section 6.6.

6.2 state of the art

6.2.1 Fault detection and diagnostics in buildings
Kim et al. present a comprehensive review of FDD for building systems
in recent years. FDD studies are classified using two different schemes:
based on building equipment/size, such as large/small buildings, heat-
ing, ventilation and air conditioning (HVAC) systems, lighting, water
heaters and ventilation units, and based on method. FDD methods
can be divided in history based and qualitative or quantitative model
based [41].

History-based methods rely on the availability of historical data for
a building. Such data is used to create black-box or gray-box mod-
els, often using machine learning techniques such as artificial neural
networks, for the system under analysis. Faults impact the system’s
behaviour so that it does no longer match the model’s predictions.
Historical-based models can be used when little or no information
about the physical system under test is available and can in general
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represent complex interactions. However, they require good quality
fault-free training data and can only make accurate predictions within
its range. Moreover, they are specific to the system used for training
and cannot easily be used on other ones.

Qualitative model-based methods rely on a priori knowledge of the
system under investigation. Such knowledge, provided by document-
ation or expert knowledge, is used to create rule-based or qualitative
physical systems. Qualitative model-based methods are simple to
implement and can usually be validated by field experts. They are
also usually robust to numerical uncertainty in input data. However,
they often result in rigid models that cannot be applied to different
systems or easily extended.

Quantitative model-based methods rely on explicit mathematical
models of system under investigation. Such models, which accurately
represent the system’s physical function, are used to simulate the
system’s expected behaviour, which can be compared with the actual
one. Quantitative model-based methods provide the most accurate
results, and are usually able to simulate transients in dynamic systems,
and even faulty behaviour. However, such models are often complex
and are both difficult to develop and computationally heavy. They
also require validation and parameter estimation with experimental
data before their results can be trusted, and cannot easily be used with
different systems.

Methods from each category have different trade-offs and are suit-
able for different kinds of systems. Hybrid approaches that make use
of multiple methods are also common, in order to exploit advantages
and reduce disadvantages of individual methods. Using multiple
methods also increases robustness and reliability.

6.2.2 building simulation

Many simulation engines are available for simulating buildings en-
ergy performance, some explicitly oriented to this field, such as En-
ergyPlus [52], some more generic, such as Modelica [53].

Clarke et al. describe the overall topic of building performance sim-
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ulation, its aims and achievements both at the present and in the
future. The authors analyze the current state of the art for building
performance simulation tools with respect to different aspects, such as
subsystems modeling, control, occupants representation, computation
time and economic considerations [54].

Costa et al. discuss the advantages brought by monitoring buildings
and comparing with energy performance simulations. The authors
describe some of the available visualization techniques to display
information obtained from building monitoring in a way to facilitate
FDD. They also describe how results from monitoring can be used to
improve model calibration and operations optimization [55].

Maile et al. propose a new methodology to compare results from
simulations using energy models to actual measured data. They con-
sider the importance of multiple hierarchies, such as by component
and by location, which can be used to better evaluate the results. An
assessor should gather measurement and simulation assumption, per-
form simulation and collect data, and finally compare the results. All
differences between simulated andmeasured datamust be categorized
in either: measurements problems, simulation problems and opera-
tional problems. Not all differences are actually performance problems,
some may be due to measurement or simulation assumptions. Models
should be iteratively adapted to reflect the actual building [88].

Wetter propose a framework to connect several simulation engines
together using Ptolemy II modeling environment as middleware to
manage communication. The authors define an interface for commu-
nication between the engines and implement it for several engines
such as EnergyPlus, Modelica, Matlab and Simulink. The authors test
their framework by performing a co-simulation between EnergyPlus
and Modelica, exploiting the advantages of each engine in a particular
domain [89].

Pang et al. present a framework for real-time simulation synchron-
ized with the actual building using the simulation engine EnergyPlus.
The simulation is managed using Ptolemy II actors and a BACnet inter-
face is used to exchange data with the building management system
(BMS). The authors proceed to test their methodology on a real test
bed and observe large differences between measures and simulated
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total energy consumption. However, when looking at disaggregate
plots it is possible to figure out what are the causes. Difference of
cooling energy consumptions have similar peaks of difference of total
energy consumptions, and they are caused by mismatch in chilling
strategies between the model and the actual equipment. The same
was noted in the case of lights left on overnight [90].

This framework support only few selected simulation engines and
only BMSs that publish data over a BACnet interface. In order to over-
come these restrictions Pang et al. revise their work and re-implement
their framework by using functional mock-up interface (FMI), which
is a standard interface supported by many simulation engines. They
also use the simple measurement and actuation profile (sMAP) to
exchange data, which is an open protocol for data publication [91].

Sharmin et al. present a methodology for sensor-based monitoring
of buildings and apply it to two residential buildings and run data
analysis on the results. The authors show how monitoring reveals
non-obvious information and insights about energy consumption, e.g.
heating loss was higher for units on middle floors, which suggests the
need for better insulation. The authors also observe that users react
by improving their energy usage when introducing feedback from
monitoring, but only short term. Automated control is necessary to
achieve long-term results [92].

With most engines, users must perform repetitive, time-consuming
and error-prone operations to setup and run a simulation. First they
have to fetch the input data, optionally preprocess it, and convert it
to the expected format (e.g. many engines expect data at fixed inter-
vals corresponding to the simulation step). Then the model must be
modified to point to the correct input data files. Then the user must
manually start the simulation. Finally the user can access the results
usually from a comma separated value (CSV) file.

Often simulation results are interesting for multiple users. Either
such users must each independently go through all the mentioned
steps, or one user usually shares the results by unstructuredways, such
as sending files by email. The former option multiplies the necessary
time (and the potential for errors), while the latter presents other prob-
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lems, such as misunderstandings with respect to successive versions
of results and possibly authorization issues.

Finally, models in quantitative model-based methods are complex
and strictly related to the equipment under test and, therefore, are
difficult to generalize and apply them with different equipment. Dif-
ferent simulation engines are optimized for certain systems and users
need to learn the details of each of them. Thus, it appears evident that
a solution able to automate simulations from different engines in a
transparent way and make real-time results easily available online to
multiple users is valuable.

6.3 methodology for fault detection and
diagnostics in buildings

Faults in buildings impact either occupants comfort or energy con-
sumption. We use a dynamic energy performance model to simulate
the building’s behaviour and compute the expected energy consump-
tion. Thus, any deviation of the actual energy consumption data
compacted to the simulated results will highlight faults and anomalies
to be investigated.

Buildings record energy consumption at different layers. There is a
main meter for electricity that measures the entire building consump-
tion and sub-meters for every system, such as HVAC and lighting.
Some buildings also have individual sub-meters for floors, other zones
or other components. Separate energy distribution trees can be avail-
able for hot water and district heating systems, depending on the
building. Figure 6.1 shows an example of electrical energy distribution
tree for a building. Sub-meters allow to split the aggregate data from
the main meter and to understand how different systems use energy
in the building in a more clear and detailed manner. Building energy
models are able to provide results at different granularity, therefore, it
is possible to compare actual and simulated values for sub-meters.

In this study we develop and implement a top-down approach for
FDD as shown in Figure 6.2: when a deviation between actual and
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Electricity
Whole Building HVAC Ventilation Unit 1

Ventilation Unit 2

Ventilation Unit 3

Ventilation Unit 4

Misc Elevators

Lighting Basement

Ground Floor

First Floor

Parterre

Roof

Figure 6.1: Distribution tree in a building for electrical energy. The main
meter can be decomposed in HVAC and its ventilation units, and in
lighting, which can be in turn decomposed by floor, andmiscellaneous.
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Main MeterWhole Building

HVACSystem

Ventilation Unit 3Unit

Pump 3Component

Fault
Identification

Figure 6.2: Top-down approach in fault detection and diagnostics. Compar-
ing recursively different layers of the building’s distribution tree allows
to reduce the scope of faults.

simulated values is detected at the main meter, the next sub-meters
layer are compared to understandwhich system is affected by the fault.
This recursive investigation continues until reaching the leaves of the
energy distribution tree. At this point the smallest unit or zone where
the fault is located was identified. After the scope was reduced, it is
possible to use a more focused FDD method to completely isolate the
fault.

Let’s assume, for instance, that we have detected a higher consump-
tion of the building with respect to the district heating distribution
tree. Hot water coming from the district heating pipes is used to heat
up air in the ventilation units and water in radiators. In our next step
the simulated and actual values for the respective sub-meters are com-
pared. If the radiators are found responsible for the deviation, the
ventilation units are then excluded from the investigation and labeled
as not faulty. Depending on the granularity of sub-meters, we could go
deeper in the distribution tree and isolate the exact areas responsible
for higher energy consumption, and from there perform specific FDD
for radiators.

107



6 Online Energy Simulator

Simulation

sMAP
(Data Storage)

FMU Simulator

FMU

Occupancy Data
Weather Data
Sensor Data

Setpoints Data
EnergyPlus
Modelica

Matlab

Figure 6.3: Architecture of online energy simulator. All data are accessed
through sMAP and the simulation engine is embedded in a FMU and
operated through FMI.

6.4 online energy simulator
The online energy simulator is a tool that

– fetches required data for the simulation (e.g. weather conditions
or occupancy count) from time series on the data storage;

– maps such time series to a model’s input variables;
– runs the simulation for a specified number of steps / period of

time;
– collects results from model’s output variables;
– posts results to the data storage.

All these operations are automated and the online energy simulator
can be run without any manual intervention. The high-level architec-
ture is shown in Figure 6.3.

The online energy simulator uses the simple measurement and actu-
ation profile (sMAP) for accessing building data, a protocol common
for building systems [93]. The protocol supports reading and writing
time series. It also supports time series metadata in form of key-value
pairs. Metadata can be used to query the data storage for the correct
time series. The protocol is independent of the underlying storage
system. In order to add support for sMAP to a system it is enough
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to develop a driver, i.e. an application that forwards data from such
system over sMAP.

In order to support different simulation engines, the online energy
simulator uses the functional mock-up interface (FMI). FMI is an
interface to perform model exchange and co-simulation of dynamic
models [94]. It allows to wrap an existing model in a self-contained
functional mock-up unit (FMU) and to make it available to other
programs. A program can run simulations through FMUs without
any information about the actual simulation engine.

6.4.1 configuration
FMUs expose input and output variable through the FMI. The online
energy simulator uses a set of configuration files to map such variables
to time series. Input variables can be provided in three different ways

– Explicitly: the variable’s value is constant over the whole simula-
tion period and set in the configuration file;

– From a CSV file;
– From a time series on sMAP, identified by its universally unique

identifier (UUID).

Basic arithmetic operations are also supported to allowunit conversion.
For each input variable the online energy simulator will either prepare
a constant time series, load it from the CSV file or fetch it from the
data storage. Then it will pass it to the FMU and start the simulation.

Output variables are mapped to sMAP time series by source name,
path and UUID. The online energy simulator also supports setting
metadata of output time series, e.g. its unit or its location. An example
of mapping configuration is shown in Listing 6.1.

Besides input / output mappings the online energy simulator reads
from configuration files the path to FMU, simulation start / end time,
simulation step size and sMAP connection details.

The FMU and configuration files completely define the behaviour
of the online energy simulator. Therefore, it is simple to replace the
model when a newmore accurate version is available, or even to switch
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Listing 6.1: Example Mapping Configuration File.

# Input variables
CO2_Setpoint_Zone_1_UUID=12345678-abcd-==�
Heating_Setpoint_Zone_1_VALUE=21
Cooling_Setpoint_Zone_1_CSV=cooling_1.csv

# Output variables
CO2_Level_Zone_1_PATH=/simulations/zone_1/co2
CO2_Level_Zone_1_Metadata/SourceName=Simulation
CO2_Level_Zone_1_Metadata/Unit=ppm
CO2_Level_Zone_1_Metadata/Room=Room 1
CO2_Level_Zone_1_Metadata/Floor=0

to a different simulation engine, as long as the new one supports the
FMI.

batch and real-time simulations

Necessary input data for thewhole simulation periodmust be available
at the beginning of simulation. This assumption holds for simulations
over historical data, but not for simulations over present or future time,
where data become available during the simulation itself. A naive
solution would be to divide the simulation period in single iterations
and run independent simulations in sequence. For instance, the online
energy simulator could simulate one day at the time over a week.
However, some engines such as EnergyPlus perform a certain amount
of initial warm-up steps to compute initial values for room temperature
and other measurements. This would result in discontinuities at the
boundaries of each iteration.

To account for this use case, the online energy simulator supports
a special kind of execution. The simulation period is again divided
in single iterations, but the online energy simulator stops at the end
of each iteration and waits for user input. Then it fetches input data
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only for the next iteration period (with the exception of weather data),
and runs the next iteration. The warm-up phase is only performed
at the beginning of the first iteration, and all the measurements are
continuous over the entire simulation period. User input for iteration
start is deterministic and, therefore, the user can be replaced by another
program.

6.4.2 energyplus simulation engine
EnergyPlus is a whole building energy simulation tool developed by
the U. S. National Renewable Energy Laboratory [52]. It is used to
simulate the building’s behaviour and energy consumption over time,
both at whole building level but also at room and subsystem level.
It can simulate large variety of buildings subsystems such as HVAC,
water and hot water distribution and lighting.

The model describing the building is contained in a single Energy
Plus input (IDF) file. This file contains information about the whole
building envelope, such as walls, pavements and windows, their geo-
metry, material and thermal properties, and about the building sub-
systems such as ventilation units and lights. The building is divided
in independent thermal zones that interacts between each other over
time.

EnergyPlus supports wrapping its models to FMUs and to expose a
machine-friendly interface usable by the online energy simulator [95].

weather file update

Due to using the FMI the online energy simulator is engine-agnostic,
i.e. it supports EnergyPlus models but also models from other sim-
ulation engines, as long as they expose the correct interface. There
is one exception, however, because EnergyPlus has limited support
for weather data as input. Instead, weather data must be provided
in the form of an Energy Plus weather (EPW) file, and it needs to be
available at FMU creation time.

Since providing updated weather data at execution time is a useful
use case, the online energy simulator supports this EnergyPlus-specific

111



6 Online Energy Simulator

feature. FMUs are in practice renamed ZIP files containing the simula-
tion engine (or a wrapper to call the actual engine) in form of a shared
library. FMUs created from EnergyPlus contains also additional files,
i.e. the model IDF file and an EPW file.

When the online energy simulator loads an FMU it decompresses its
ZIP file, replaces the interesting columns of its EPW file with weather
data provided as input and re-compresses as a new ZIP file. In this
way it is possible to provide weather data at the beginning of a simu-
lation. Providing weather data as input during the simulation, such as
for occupancy data or setpoints, is not possible due to limitations of
EnergyPlus engine.

6.5 case study: building ou44
In this paper we present building Odense undervisning 44 (OU44)
as case study [7]. The building, shown in Figure 6.4, is located at
University of Southern Denmark, campus Odense and was built in
2015. It has four floors and is mainly used for teaching and it consists
of classrooms, study rooms and offices. Regarding the HVAC system,
there are four ventilation units, each serving one of the corners of the
building. In addition, the building is heated using a district heating
loop and, partially, through the ventilation system.

Every room has the following sensors:

– Temperature [celsius];
– CO2 [ppm];
– PIR [boolean];
– Light [lux].

Some rooms have additional sensors or meters. For instance some
have separate meters for plug load or sensors for humidity. Four test
rooms are equipped with occupancy counting cameras that provide
an estimate of people in the room. In addition to that, the building has
a weather station that records outdoor temperature, wind speed, rain
and solar radiation. There are also several energy meters: for heating,
ventilation, hot water, lighting, plug load, usually aggregate by floor
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Figure 6.4: Building OU44 at University of Southern Denmark, campus
Odense.

or area. Finally, occupancy counting cameras are also located at every
entrance of the building, providing an estimate of people in the entire
building.

All sensors are accessible through a KNX bus [58] and broadcast
records to the BMS according to their configuration. All energy meters
are accessible through an EnergyKey system. Custom drivers fetch
data from the BMS and EnergyKey system and publish it to a central-
ized data storage using sMAP, so that it is available to other applica-
tions, such as occupancy prediction [59] and model development and
calibration [60].

6.5.1 monitoring building performance with online
energy simulator

An overall dynamic energy performance model for the OU44 model
was developed by Jradi et al. considering various building character-
istics and specifications including physical envelope, energy supply
systems and operational parameters [7]. The building model is con-
tinuously re-calibratedwithin the developed framework, considering a
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3 months timeframe. The model was prepared for export by exposing
selected input/output variables in the interface. This step is automated
using the EPQuery tool [96], which helps to modify EnergyPlus IDF
files using Python scripts. Employing the developed dynamic model,
the online energy simulator was configured and deployed to the case-
study building OU44 to monitor its energy performance. Once per
day a simulation is run over the previous 24 h providing the following
input data:

– Weather data from the local weather station: outdoor temperat-
ure, wind speed and solar radiation;

– Whole building occupancy data, obtained from occupancy count-
ing cameras;

– Single room occupancy data for the four test rooms that have
occupancy counting cameras.

We focused on the four test rooms because having an estimate of the
occupants count helps understanding their dynamics. These rooms
also have additional room level energy meters and higher resolution
sensors.

The following output variables were collected at each simulation
step, i.e. 10min, and posted to data storage:

– Whole building electrical energy consumption;
– Whole building heating energy consumption;
– Whole building lighting energy consumption;
– Electricity consumption for the four ventilation units;
– Room temperature for the four test rooms;
– CO2 level for the four test rooms.

An overall building occupancy profile was generated using input
from the different camera counts around the building [97]. The model
assumes that occupants spread uniformly over the entire building. For
the four test rooms, however, specific occupancy count estimates are
provided to improve simulation accuracy.

Once results are posted to data storage, they are available to every
other application. In particular, simulation results can be compared
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with the actual measured values. This allows to detect any deviation
or differences between the actual and predicted performance of the
building.

6.5.2 results
In this section we show the results obtained by running the online
energy simulator on OU44. We used an EnergyPlus model and we ran
simulations for 8 months from Thursday 1 September 2016 to Sunday
14 May 2017. We provided whole building occupancy count, room
level occupancy counts for four test rooms, outdoor temperature, wind
speed and solar radiation as simulation input. We show charts for
selected time periods.

results for energy performance

Figure 6.5 shows the simulated and measured electrical energy con-
sumption over a week for building OU44. Cumulative energy con-
sumption over time is shown on the left column and energy consumed
every 2 h is shown on the right column. We chose this value because
some of the sub-meters have low time resolution, which resulted in
spikes using shorter values. The last row shows the total occupants in
the building, estimated through the occupancy counting cameras.

Energy performance at the whole building level is on par with the
simulation results, with a small deviation toward the end of the week.
We consider the next sub-meters layer, i.e. the ventilation system and
lighting. The rest of energy consumption is due to building operations,
such as elevators and plugs load. We observe two distinct phenomena:
the ventilation system performs consistently worse than the model,
and energy consumption for lighting deviates significantly during the
weekend.

We can explain the anomaly for lighting by looking at occupancy
over time. During the weekend, occupants count drops but the build-
ing is not completely empty. It is possible that a small number of
students come to study on weekends and spread to different rooms.
In this case the lights would be turned on for many rooms even with a
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small number of occupants, while the model assumes a proportional
lighting energy consumption.

We continue our investigation of the ventilation system and examine
the sub-meters in the next layer, i.e. at the individual ventilation units.
Unit 1 follows closely the simulation, but the other three deviate. Units
2 and 4 consume less energy than expected, while unit 3 consumes
significantly more. There are no more meters in the ventilation units,
therefore, we cannot further compare simulated and measured per-
formance. We succeeded in reducing the scope to ventilation unit 3,
which has a large deviation from the expected performance and now
we can run specific FDD techniques to completely isolate the faulty
component. Further investigation should also be performed to under-
stand why ventilation units 2 and 4 have a lower energy consumption
than expected.

results for indoor conditions

In addition to energy meters, we compared the room level indoor
conditions measured by building sensors with the ones from the sim-
ulation.

Figure 6.6 shows the simulated and measured room temperature
for one of the four test rooms. Although the dynamic EnergyPlus
model was calibrated based on the overall energy consumption of the
building, actual room indoor air temperature were found to be in line
with the model predictions, with the two values following the same
trend. However, it is noticed that room temperature measured by the
building sensor quickly drops during the night of Tuesday 4 April
2017, deviating from the simulated value.

We can explain this anomaly by noticing that the indoor temperature
follows closely the outdoor temperature recorded by the building’s
weather station. The most likely cause was that the room windows
were left open during the night.
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Figure 6.5 (first): Data from energy meters and simulation results for build-
ing OU44. Cumulative energy consumption over time is shown on
the left column, energy consumed every 2 h on the right one. Total
occupants in the buildings are shown on the last row.
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Figure 6.5 (continued): Data from energy meters and simulation results for
building OU44. Cumulative energy consumption over time is shown
on the left column, energy consumed every 2 h on the right one. Total
occupants in the buildings are shown on the last row.
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Figure 6.6: Comparison between simulated andmeasured room temperature.
Temperature dropped sharply during one night, following the outdoor
temperature.

computational load of simulations

In order to estimate the computational load of simulations we ran the
online energy simulator over periods of different lengths and recor-
ded the elapsed time. The results are shown in Table 6.1. Simulating
an entire day or even an entire month only takes few minutes. The
elapsed times are very similar even for very different simulation peri-
ods because EnergyPlus spends long time during the warm-up phase,
which is the same for every simulation.

6.6 conclusions
We proposed a method for FDD in building systems using dynamic
energy models to simulate the expected behaviour of the building and
compare it with the actual one at different layers. We presented a tool
for scheduling and automatically running simulations without user
interaction, using industry standard interfaces to support many simu-
lation engines and building systems. Finally, we tested our method
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Table 6.1: Elapsed time for different simulation periods.

Simulation Period Elapsed Time

1 d 279 s
7 d 349 s
30 d 518 s
60 d 683 s

and tool on a real buildings, identifying anomalies in energy con-
sumption of lighting and ventilation units, and in room temperature.
As the tool was implemented for a short time for validation in the
case-study building, the savings due to the implementation were not
evaluated, but major expected savings include less operational costs,
higher maintenance process response, lower energy consumption and
higher thermal comfort.

Splitting energy consumption in sub-meters allowed us to under-
stand how different subsystems use energy inside our building. We
were able to follow the energy distribution tree from its root to its
leaves, ruling out branches where measured values were on par with
simulation results and exploring the ones where the they deviate. We
succeeded in identifying the ventilation unit responsible for higher
energy consumption and gained insights about the lighting system.

We also showed how using an automated solution to schedule sim-
ulations can reduce the risk for human errors. The online energy
simulator developed and presented in this study has been running
automatically for several months in the OU44 building within the
‘ObepME Tool’, Online Building Energy Performance Monitoring and
Evaluation, for automatic and continuous energy monitoring and eval-
uation of the overall building energy performance aiming to reduce
energy performance gaps and forming a backbone for fault detection
and diagnostics [8]. Thanks to a configuration-based approach, we
are able to easily upgrade and calibrate the dynamic model to newer
versions and repeat simulations over any period with any functional
changes.
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6.6.1 future work
Themethodology proposed in this paper covers the high level identific-
ation of a faulty subsystem, and represents an important intermediate
block of a complete FDD solution for building systems. In order to
perform a full FDD it is first necessary to ensure validation of input
data—which we previously approached in [1]—and then to use spe-
cific methods to completely isolate the faulty component inside the
identified subsystem. Those methods should exploit the characterist-
ics of the considered systems, such as individual ventilation units or
room lighting, to reach the best FDD performance. Moreover, simu-
lated and measured data are both available on our data storage for
client applications, but they are not accessible in a user-friendly way.
A dashboard application would enable non-technical users to assess
the building status and performance.

Furthermore, we are extending the online energy simulator to play
an important role as component of a new virtual building. The virtual
building behaves as closely as possible to a real building, also with
respect to control input. It waits for new actuation commands to be
posted to our data storage and simulate the outcome. A BMS can then
be deployed on the virtual building making possible to test our control
strategies before deploying it on a real one.
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chapter 7introducing redundancy
through linear regression

virtual sensors
This chapter is a cosmetic adaptation of the following conference paper.
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in Ventilation Units Using Linear Regression Virtual Sensors’. In:
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The paper was presented at the IEEE International Symposium
on Advanced Electrical and Communication Technologies in Kenitra,
Morocco, on Wednesday 21 November 2018.

abstract
Buildings represent a significant portion of global energy consumption.
Ventilation units are one of the largest components in building systems
and are responsible for large part of energy consumption.

Ventilation units are complex components, often customized for the
specific building. Their faults impact buildings’ energy efficiency and
occupancy comfort. In order to ensure their correct operation, proper
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fault detection and diagnostics methods must be applied. Hardware
redundancy, an effective approach to detect faults, leads to increased
costs and space requirements.

We propose to exploit physical relations inside the unit to create
virtual sensors from other sensors’ readings, introducing redundancy
in the system. We create linear regression models for three sensors
using other sensors related through physical laws as inputs. We use
two different measures to detect when a virtual sensor deviates from
the actual one: coefficient of determination and acceptable range.

We test our method on a real building at the University of Southern
Denmark. Our method detects a fault in temperature sensor, where
its readings have an abnormal trend and fall outside acceptable range
for one day.

7.1 introduction
In Europe, buildings account for 40% of the total energy used and 36%
of the total CO2 emissions [12]. In the United States, the buildings’
sector accounted for about 41% of primary energy consumption in
2010, 44% more than the transportation sector and 36% more than
the industrial sector. Total building primary energy consumption in
2009 was about 48% higher than consumption in 1980, going from
1290TWh to 2784TWh [16].

Modern buildings consist of different subsystems such as heating,
ventilation and air conditioning (HVAC) units, lighting and heating.
Each subsystem contains in turn several components such as pumps,
fans, ducts, sensors, lamps, wires etc. monitored and managed by a
buildingmanagement system (BMS). All these components are subject
to faults, due to damage, wearing over time, misconfiguration and
communication issues. Faults impact occupancy comfort, maintenance
cost and particularly energy efficiency. It is estimated that in 2009 just
13 of the most common faults were responsible for over $3.3 billions
in energy loss [36].

HVAC load varies depending on building type and location, but
they are one of the heaviest subsystems and canmake up to 50% of the
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total energy consumption and, therefore, faults involving them cause
large energy loss [98]. Research suggests that between 20% to 30%
energy saving could be achieved by re-commissioning malfunctioning
HVAC systems [99]. HVAC systems are often customized for their
specific building and, therefore, lack quality system integration [100].

7.1.1 problem statement
Building energy efficiency cannot be achieved without fault detection
and diagnostics (FDD) methods applied to ventilation units. Hard-
ware redundancy is an effective approach to high quality FDD, how-
ever, duplicating sensors and other components inside every unit
increases deployment and maintenance costs, necessary space and
complexity. Commercial ventilation units are rarely shipped with
hardware redundancy.

In this paper we propose a mixed model-based and data-driven
technique to exploit spatial relations among different components in
ventilation units to create virtual sensors and introduce redundancy in
the system, which can be used to detect and diagnose faults. For each
considered sensor we train a linear regression model to estimate it
given other sensors in the unit. This allows us to detect and diagnose
faults that cause actual and virtual sensors to deviate from each other.
We apply this technique to a real world building and report the results.

The rest of the paper is organized as follows. The state of the art
is reviewed in Section 7.2. The proposed technique is introduced in
Section 7.3. Section 7.4 presents the case study and discusses results
and implications. Finally, conclusions are drawn in Section 7.5.

7.2 state of the art

7.2.1 Fault detection and diagnostics
Kim et al. present a comprehensive review of recent FDD methods
for building systems [41]. FDD methods are categorized in three
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groups depending on the approach: data-driven methods, model-
based methods and rule-based methods.

In data-driven methods a black-box model of the system under test
is trained over historical data using techniques such as artificial neural
network or regression models. These methods require no detailed
knowledge of the system and can be easily generalized. Historical
labeled faulty and fault-free data are necessary to improve fault detec-
tion and to perform fault isolation and diagnostics.

In model-based methods a model of the system under test is created
from first principles. These techniques are often accurate and can
detect and diagnose unknown faults. Models can become complex,
and detailed knowledge of the physical characteristics and relations
of the system’s components is required to create them.

In rule-based methods expert knowledge is used to design a set of
rules describing the system’s behaviour. No historical data or detailed
knowledge from the system are necessary. Large rules sets are ne-
cessary to describe complex behaviours, which lead to conflicts and
maintenance effort.

Yu et al. present a reviewof FDD techniques for ventilation units [100].
The authors focus on software redundancy techniques, classifying
them in model-based, data-driven and rules-based categories as in
general FDD methods, and define a list of desirable characteristics:
1. Quick detection anddiagnostics, 2. Isolability, 3. Robustness, 4.Novel
identifiability, 5. Classification error estimate, 6. Adaptability, 7. Ex-
planation facility, 8. Modeling requirements, 9. Storage and computa-
tional requirements, 10. Multiple fault identifiability.

7.2.2 virtual sensors

Li et al. present a review of virtual sensing techniques in the context of
building systems [51]. Virtual sensors have been successfully applied
to other fields such as process control and automotive for more than
two decades, and their usage would be advantageous in building sys-
tems. Virtual sensing techniques are categorized according to three
criteria. Measurement characteristics, i.e. whether the sensors repres-
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ents sensor at steady state or during transients. Modeling method,
i. e., model-based or data driven, a similar characterization as general
FDD techniques. Application purposes, i. e., whether the sensors are
used for redundancy and FDD, or for monitoring additional unknown
quantities.

Li et al. propose a method for FDD in air conditioners using features
decoupling and virtual sensors. The authors create virtual sensors for
several quantities, such as compressor power consumption, refriger-
ant flow, condenser exit pressure, exit air humidity and evaporation
temperature. Virtual sensor performances are tested both at steady
state and under transients [101].

Cugueró-Escofet et al. present an approach for sensors data valida-
tion and reconstruction and apply it to urban water distribution sys-
tems. Raw data undergoes several tests, from low-level tests checking
elementary properties of signals to high-level tests exploiting spatial
consistency between different sensors [78].

Cotrufo et al. develop a virtual sensor modeling exhaust airflow in
ventilation units. Airflow sensors for exhaust duct are rarely present in
ventilation units due to initial cost. They use energy balance equation
to relate other sensors in the system with the airflow and propose two
different models. While the local errors can be large, the authors show
how the cumulative residuals are small and, therefore, the virtual
sensor can be used to estimate daily averages [102].

Kusiak et al. propose data-driven models for virtual sensors for
room level indoor air conditions, i.e. temperature, CO2 level and re-
lative humidity. The authors develop four data mining techniques,
including artificial neural networks, support vector machines regres-
sion and Pace regression. The obtained virtual sensors can be used
for validation and calibration of physical sensors [103].

Verbert et al. propose amulti-model FDDmethod forHVAC systems
that exploits components interdependencies. They develop Bayesian
networks for multiple operating modes, using both actual and vir-
tual sensors created from system knowledge and historical data. The
authors show how using virtual sensors significantly improves FDD
performance [104].
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7.3 virtual sensors in ventilation units
A ventilation unit is an aggregate of several components, integrated
together to provide air exchange to the building. It is important that
every component works correctly, otherwise performance of the unit
will deteriorate, causing energy loss and reducing comfort level in the
building.

Since all components work together they exhibit common patterns
and shared phenomena. Even if there is no explicit redundancy in the
system, i.e. no duplicated sensor ormeter, many of the quantities in the
unit are strongly correlated. In this paper we propose to exploit these
relations and create models to predict a quantity from the surrounding
ones, generating a set of virtual sensors. Given actual sensors available
in the ventilation unit S1,S2, … , Sn, a virtual sensor S′

i measuring the
same quantity of Si is created using a model f (⋅) that takes other
sensors as input, i. e.,

S′
i = f (𝒮)

𝒮 ⊊ {S1,S2, … , Si−1,Si+1, … , Sn}.

For instance, consider a heating system where the following quantit-
ies are measured with sensors or meters: initial temperature T0, heater
energy M and final temperature Tf . A virtual sensor for final temper-
ature could be created using a model of initial temperature and heater
energy T′

f = f (M,T0).
Different methods can be used to compute the value of a virtual

sensor. When detailed knowledge about the unit is available it is
possible to use physical models, e.g. computing airflow using fan
speed and duct size and shape. Otherwise, it is possible to train black
box models using data-driven techniques.

7.3.1 fault diagnostics
When two sensors, either actual or virtual, deviate, the only possible
inference is that a fault is affecting one of them. In order to diagnose the
faulty one a third sensor is necessary. Under the assumption of single
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simultaneous fault, when in a group of three sensors one deviates
from the other twos, the former is identified as faulty.

Due to cost and space constraints, duplicated sensors are rarely
available in ventilation units, and even less so are triplicated sensors.
However, these constraints do not impact virtual sensors, which can be
created without cost using data from other components. Some care is
necessary when choosing the inputs: different virtual sensors should
share as few inputs as possible, because a fault in an input impacts all
its related virtual sensors.

For instance, consider a heating system with two initial temperature
sensors T0,T1, a heater energy meterM and a final temperature sensor
Tf , where two additional virtual sensors for final temperature were
created as

T′
f = f (M,T0), T″

f = f (M,T1).

Assuming a single fault scenario, if T′
f and T″

f agree on their readings
and Tf deviates from them there are two possible causes:

– Sensor Tf is faulty;
– Heater energy meter M is faulty.

This is due to the fact that heater energy meter M is used as input in
both virtual sensors T′

f and T″
f , therefore, its fault impacts both their

output.

7.3.2 measuring deviations from actual sensors
In order to automatically detect a fault, a measure of how much the
virtual sensors deviate from the actual one is necessary. Several tools
are available from statistical analysis, e.g. the maximal error or the
normof residuals. In this paperwe use the coefficient of determination,
or R2 score, which gives an estimate of how much a model fit the
data [105]. An R2 score close to 1 indicates that the model is a good fit
for the data, while values close to zero indicates the opposite. Negative
values indicate that the model predicts data worse than a constant
horizontal line.
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We use the R2 score both to verify that the trained models fit the
testing data, i.e. that the designed model accurately follows the actual
sensor, and to validate real-time data from the ventilation unit. For
each period of interest, e.g. every day, the R2 score for each virtual
sensor against the actual sensor is recorded. When the measure is
lower than a given threshold the pair virtual / actual sensors are
flagged as faulty.

Another option for detecting deviations between actual and virtual
sensor is tomake the latter output an acceptable range. E.g. the predicted
value plus the largest training error, or a confidence interval based on
another training error statistics. When actual readings fall outside the
acceptable range the two sensors are flagged as faulty.

With both approaches, labeled faulty testing data would be neces-
sary to obtain accurate thresholds.

7.4 case study

7.4.1 building ou44
In this paper we present building Odense undervisning 44 (OU44)
as a case study [7]. It was built in 2015 at the University of Southern
Denmark, campus Odense, and it is mainly used for teaching. It has
three floors plus a basement and it contains classrooms, study zones,
offices and auditoriums. It has four nearly identical ventilation units,
each serving one corner of the building, or roughly 20 thermal zones.

A ventilation unit consists in a large air loop, as shown in Figure 7.1.
Inlet air enters the building, goes through a heat exchanger (HX), then
is heated to appropriate indoor temperature and pushed to the supply
shaft, which is connected by variable air volume (VAV) units to indi-
vidual rooms. In the sameway, exhaust air is collected from individual
rooms in the extract shaft, it goes through the heat exchanger and it
is pushed outside. The heat exchanger recovers heat from exhaust
air and transfers it to inlet air, reducing the energy required by the
heater. Air pressures in supply and extract shafts are kept at constant
values 130 Pa and 40Pa, which cause air to flow in the rooms. Two
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Figure 7.1:Diagram of a ventilation unit in building OU44. Inlet air enters the
unit from bottom-left, passes through the heat exchanger and through
the heater, before entering the main shaft and supplying individual
rooms. From the rooms it enters again the main shaft, goes through
the heat exchanger to heat up inlet air, and finally is pushed outside
the building. Several sensors, shown by arrows, are available in the
unit.

fans in the ventilation unit generate the required airflows to maintain
the pressure setpoints.

Several sensors, shown as arrows in Figure 7.1 are available inside
ventilation units and heating loops: air temperature at several po-
sitions, airflows trough the two fans, supply and extract pressure,
incoming and outgoing water temperature, and water flow through
the pump. In addition to that, several meters measures the activity of
fans and water pump: fan speed, fan current and voltage, fan power
and electrical consumption, and pump electrical consumption.

Ventilation units are only working during working hours, i.e. from
Monday to Friday from 7am to 6pm in local time, and are shut down
at night and during the weekends.
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Table 7.1: Virtual Sensors Definitions.

Model Name Output Inputs

Model A post-HX temperature Inlet temperature,
extract temperature,
airflow

Model B post-HX temperature Inlet temperature,
water flow,
water loop temperature
difference

Model C Airflow Effort
Model D Airflow Fan speed
Model E Fan speed Airflow
Model F Fan speed Fan current, fan voltage

7.4.2 results

Three sensors were considered for monitoring in a ventilation unit:
post-heat exchanger temperature, airflow and fan speed. For each of
them two different models were constructed using other sensors as
inputs, as shown in Table 7.1. Linear regression models were used
under the assumption that inputs and outputs obey linear relations,
at least locally [106]. Models were trained over a week long historical
data fromMonday 13March 2017 to Sunday 19March 2017, and tested
over two weeks from Monday 27 March 2017 to Sunday 9 April 2017.

Another virtual sensor was also constructed, i.e. Effort, which is
proportional to an estimate of the power requested to the ventilation
unit and, therefore, to the airflow. By design fans produce airflow to
maintain constant shaft pressure, which in turn depends on howmany
VAV units are open in the building. Effort is an aggregate count of
those units, which makes it effectively a virtual sensor for an unknown
quantity in the ventilation unit.

For each sensor two models were used, in order to perform fault
diagnostics and not only fault detection. Table 7.2 shows the R2 score
of the models’ predictions over each day, which measure how much

136



7.4 Case Study

Table 7.2: Prediction R2 score for virtual sensors.

Temperature Airflow Fan Speed
Date Model A Model B Model C Model D Model E Model F

2017-03-27 0.955 0.782 0.371 0.987 0.988 0.997
2017-03-28 0.989 0.804 0.04 0.98 0.977 0.997
2017-03-29 0.839 0.217 0.368 0.992 0.992 0.995
2017-03-30 0.894 0.729 0.681 0.956 0.956 0.996
2017-03-31 −1.162 −1.995 0.572 0.852 0.908 0.996
2017-04-03 0.86 0.442 0.87 0.967 0.968 0.997
2017-04-04 0.886 −0.474 0.644 0.983 0.984 0.997
2017-04-05 0.774 0.57 0.8 0.944 0.953 0.996
2017-04-06 0.73 0.654 0.622 0.988 0.989 0.997
2017-04-07 0.802 0.537 0.772 0.904 0.932 0.996

actual and virtual sensors agree. LowR2 scores, indicating that models
deviate from the actual sensors, are highlighted in boldface.

For temperature two models are used, one exploiting knowledge
about the heat exchanger interactions (Model A), and another one
which relies on similar but less structured relations between air tem-
perature and heater (Model B). The former predicts temperature value
much more accurately than the latter. Table 7.2 shows that both mod-
els deviate significantly from the actual sensor on 31 March 2017, and
Model B deviates also on 4 April 2017. Readings from the actual
sensors are shown in Figure 7.2 with respect to the two models’ er-
ror ranges, which corresponds to the predictions plus the maximal
training error.

On 31 March 2017 the actual sensor’s readings oscillate strongly, in
contrast with the two virtual sensors which have a smoother behaviour,
and fall outside the models’ error ranges. Since the two models share
an input variable, i.e. inlet temperature, this situation could be caused
by a fault in the actual post heat exchanger temperature sensor or in
the inlet temperature sensor.

The situation on 4 April 2017 is less extreme. Model B consistently
overestimate the actual sensor’s readings, but the overall trend is
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Figure 7.2: Comparison between actual sensors and acceptable ranges ob-
tained from model-based virtual sensors for post heat exchanger tem-
perature during working hours (from 8am to 5pm) for selected days.
The sensors readings fall inside the acceptable ranges except on Friday
31 March 2017, when they deviate significantly. On Tuesday 4 April
2017 Model B consistently overestimates the actual sensors, but their
trends are similar.

similar and, moreover, all the readings fall inside the model’s error
range. Therefore, this event could be classified as a false alarm. Using
a more accurate model instead of Model B could reduce the frequency
of false alarms.

For airflow two models are used, one using only effort as input
(Model C) and one using only fan speed as input (Model D). Air-
flow and fan speed follow the fan laws and are proportional to each
other [107], and as expected predictions for this model are nearly
exact.

Model C is less accurate, and its R2 score on Tuesday 28 March
2017 is very low, which suggests a fault in the virtual sensor’s input,
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i.e. ventilation effort, since Model D agrees with the actual sensor on
the same day. Ventilation effort is produced by aggregating several
independent streamswith frequent periods of missing data, which can
indeed cause the model to deviate from the actual sensor. Moreover,
ventilation effort does not take into account the size of each room and
the corresponding VAV dampers, which reduces the model’s accuracy.
Readings from the actual sensors are shown Figure 7.3 with respect to
the two models’ error ranges, which corresponds to the predictions
plus the maximal training error.

For fan speed two models are used, one using airflow as input
(Model E) and one using fan current and voltage as inputs (Model
F). Fan speed is proportional to airflow due to fan laws, and also to
the fan power consumption, which in turn depends on current and
voltage. Both models predict the actual sensor nearly exactly.

7.5 conclusions
We proposed a technique to exploit relations between physical quant-
ities inside a ventilation unit to create virtual sensors, introducing,
therefore, redundancy, which can be used to perform FDD. We ap-
plied our technique to ventilation units in a real building, creating two
virtual sensors for each of three existing sensors: temperature, airflow
and fan speed, using linear regression models. We noted how on a
particular day both virtual sensors for temperature deviated from the
actual sensors, which suggests a fault has happened.

We used simple linear regression model to generate virtual sensors
and predict physical quantities based on other sensors. Some virtual
sensors were accurate, but some others were not. Better performance
could be achieved by using more advanced methods, such as artificial
neural networks, statistical machine learning algorithms or energy
models of the ventilation units [2]. Assuming to have a training period
of fault-free historical data it would also be possible to adopt methods
from time-series analysis, such as autoregressive moving average with
exogenous variables (ARMAX) predictors, to create a virtual sensor
using its past actual sensor as input.
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Figure 7.3: Comparison between actual sensors and acceptable ranges ob-
tained from model-based virtual sensors for post heat exchanger air-
flow during working hours (from 8am to 5pm) for selected days. On
Tuesday 28 March 2017 Model C deviates significantly from the actual
sensor, but readings always fall inside the acceptable range for the
entire period.

We highlighted how during one day the R2 score between actual
and virtual temperature sensors changed abruptly and significantly
and actual sensors’ readings fell outside the acceptable range, which
suggested a fault. However, a proper threshold system must be set
up to achieve automatic FDD. This can be achieved by using expert
knowledge and a training set of labeled faulty historical data or by
generating faulty data using simulations. Moreover, the temperature
sensor exhibited faulty behaviour only for a single day during the first
week, while it appeared to work correctly in during the second one.
Therefore, a threshold system should also be used to decide whether
a significant but short-lived deviation is a fault.
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Finally, we used regression models to predict data during a period
close to the one used for training, under the assumption that the
system’s behaviour did not change significantly. When extending the
prediction to other periods, this assumption might not hold anymore,
and seasonal variations must be taken into account.
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chapter 8improving virtual sensors
with non-linear and

statistical models
This chapter is a cosmetic adaptation of the following journal paper.

ClaudioGiovanniMattera, JosebaQuevedo, Teresa Escobet, Hamid
�

Reza Shaker and Muhyiddine Jradi. ‘A Method for Fault Detection
and Diagnostics in Ventilation Units Using Virtual Sensors’. In: Sensors
18.11 (14th Nov. 2018). issn: 1424-8220. doi: 10.3390/s18113931

This workwas the result of a collaborationwith the Center for Super-
vision, Security and Automatic Control (CS2AC), at the Polytechnic
University of Catalonia (UPC), Barcelona, Spain.

abstract
Buildings represent a significant portion of global energy consumption.
Ventilation units are complex components, often customized for the
specific building, responsible for a large part of energy consumption.
Their faults impact buildings’ energy efficiency and occupancy comfort.
In order to ensure their correct operation, proper fault detection and
diagnostics methods must be applied. Hardware redundancy, an
effective approach to detect faults, leads to increased costs and space
requirements.

We propose exploiting physical relations inside ventilation units
to create virtual sensors from other sensors’ readings, introducing
redundancy in the system. We use two different measures to detect
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8 Non-linear and Statistical Virtual Sensors

when a virtual sensor deviates from the physical one: coefficient of
determination for linear models, and acceptable range.

We tested our method on a real building at the University of South-
ern Denmark, developing three virtual sensors: temperature, airflow,
and fan speed. We employed linear regression models, statistical
models, and non-linear regression models. All models detected an
anomalous strong oscillation in the temperature sensors. Readings
fell outside the acceptable range and the coefficient of determination
dropped.

Our method showed promising results by introducing redundancy
in the system, which can benefit several applications, such as fault
detection and diagnostics and fault-tolerant control. Future work
will be necessary to discover thresholds and set up automatic fault
detection and diagnostics.

8.1 introduction
In Europe, buildings account for 40% of the total energy used and
36% of the total CO2 emissions [12]. In the United States, the building
sector accounted for about 41% of primary energy consumption in
2010, 44% more than the transportation sector and 36% more than
the industrial sector. Total building primary energy consumption in
2009 was about 48% higher than consumption in 1980, going from
1290TWh to 2784TWh [16].

Modern buildings consist of different subsystems such as heating,
ventilation and air conditioning (HVAC) and lighting. Each subsys-
tem contains, in turn, several components such as pumps, fans, ducts,
sensors, lamps, wires etc. monitored and managed by a building man-
agement system. All these components are subject to faults, due to
damage, wearing over time, misconfiguration, and communication
issues. Faults impact occupancy, maintenance cost and particularly en-
ergy efficiency. It is estimated that in 2009 just 13 of the most common
faults were responsible for over $3.3 billions in energy loss [36, 41].

HVAC load varies depending on building type and location, but
they are one of the critical subsystems and can make up to 50% of the
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total energy consumption and, therefore, faults involving them cause
large energy loss [98, 41]. Research suggests that between 20% to 30%
energy saving could be achieved by re-commissioning malfunctioning
HVAC systems [99]. HVAC systems are often customized for their
specific building and, therefore, lack quality system integration [100].

Fault detection and diagnostics (FDD) techniques can be used to
monitor building systems and to detect and diagnose anomalies and
faults. FDD has been an active research area for many decades in
fields such as process operations [13], avionics [108] or water distri-
bution [109, 110], and in the past few years has caught the interest in
the field of buildings technology [39, 40, 41].

8.1.1 problem statement

Building energy efficiency and safety cannot be achieved without FDD
methods applied to ventilation units. Hardware redundancy is an
effective approach to high-quality FDD; however, duplicating sensors
and other components inside every unit increases deployment and
maintenance costs, necessary space, and complexity. Commercial
ventilation units are rarely shipped with hardware redundancy.

In this paper, we propose a mixed model-based and data-driven
technique to exploit spatial relations among different components in
ventilation units to create virtual sensors and introduce redundancy
in the system, which can be used to detect and diagnose faults. For
each considered sensor, we train a model to estimate its readings given
other sensors in the unit. This allows us to detect and diagnose faults
that cause physical and virtual sensors to deviate from each other. In
addition to linear regression models, covered in previous work [3],
in this paper we consider also autoregressive moving average with
exogenous variables (ARMAX) models from statistical analysis and
non-linear models such as support vector machine (SVM) regression
and artificial neural network (ANN).We define twomeasures to detect
when physical and virtual sensors deviate. We apply this technique to
a real-world building and report the results.

The rest of the paper is organized as follows. The state of the art
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FDD methods for buildings

Data-driven

A model of the system is
built from historical data
and used to predict/validate
data from the system itself.
Common techniques:
– Machine learning
– Artificial neural networks
– Support vector machines

Model-based

A model of the system is
built from first principles
and used to predict/validate
data from the system itself.
Common techniques:
– Parity equations
– Observers
– Kalman filters

Rule-based

A set of rules are defined
from expert knowledge and
used to determine whether
the system is working as ex-
pected.
Common techniques:
– Expert systems
– Pattern classifications
– Limits and alarms

Figure 8.1: Categorization of FDD methods for buildings adapted from Kim
et al. [41].

is reviewed in Section 8.2. The proposed technique is introduced in
Section 8.3. Section 8.4 presents the case study and discusses results
and implications. Finally, conclusions are drawn in Section 8.5.

8.2 state of the art

8.2.1 fault detection and diagnostics
Kim et al. present a comprehensive review of recent FDD methods
for building systems [41]. FDD methods are categorized into three
groups depending on the approach: data-driven methods, model-
based methods, and rule-based methods, as shown in Figure 8.1.

In data-driven methods, a model of the system under test is trained
from historical data and it is used to validate current data from the
system. Several techniques exist, such as machine learning, artificial
neural network (ANN) or support vector machine (SVM). Little to no
physical knowledge of the system is required and the resulting models
can be treated as black-box components. For this reason, data-driven
methods are easily applicable to several types of systems with small
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effort. However, historical data are necessary to create the model,
which rules out the possibility to apply these techniques to newly
deployed systems. These methods require fault-free training data,
otherwise the generated models would recognize faults as correct
behavior. To perform proper diagnostics and identify the precise fault,
labelled faulty historical data is usually necessary.

In model-based methods, a physical model of the system under test
is created from first principles and it is used to validate current data
from the system. This approach does not require training data and
often predictions are more accurate than black-box models. However,
accurate models can be complex and require in-depth knowledge
of the system and large effort to be created. Often it is necessary
to perform parameter estimation to improve accuracy, which might
require historical data and, therefore, prevent to use the model with
newly deployed systems.

In rule-based methods, expert knowledge gathered from field ex-
perts is used to design a set of rules describing the system’s behavior.
No historical data and no detailed physical knowledge of the system
are necessary. Moreover, some faults have effects that can be described
by rules, whichmakes it possible to precisely identify and diagnose the
problem. However, rules can only describe behaviors up to a certain
complexity and they can only cover simple cases. As the number of
rules grows, the possibility of conflicting rules increases and so does
the effort to maintain the set of rules.

Yu et al. present a review of FDD techniques for ventilation units
[100]. In this case, the authors classify FDD techniques into four
groups: hardware redundancy, software redundancy, signal analysis
andplausibility tests, as shown in Figure 8.2. Multiple identical sensors
and actuators lead to hardware redundancy, which allows high accur-
acy and precision, but also to higher deployment and maintenance
costs. In software redundancy, multiple physical sensors are replaced
by models obtained by other sensors in the system. In signal analysis
and plausibility tests methods, the steady-state characteristics and
other physical laws in the system are investigated. Software redund-
ancy methods are further classified in model-based, data-driven, and
rule-based, as in general FDD methods.
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FDD methods for ventilation units

Hardware
redundancy

Physical duplicated sensors
are introduced in the system
to add redundancy.

Software
redundancy

Models of sensors are created
from existing equipment in the
system to add redundancy.

Data-driven
Model-based Rule-based

Signal analysis and
plausibility tests

Steady state characteristics
and other physical laws in
the system are investigated.

Figure 8.2: Classification of FDD techniques for ventilation units according
to Yu et al. [100].

The authors also define a list of desirable characteristics of FDD
methods:

1. Quick detection and diagnostics: faults should be identified as
soon as possible;

2. Isolability: the ability to distinguish between multiple faults, i.e.,
performing diagnostics;

3. Robustness: the method should be insensitive to noise andmodel
uncertainties;

4. Novel identifiability: the ability to detect unknown faults;
5. Classification error estimate: the method should make its accur-

acy explicit, e.g., by having a confidence range as output;
6. Adaptability: the ability to automatically adapt to changes in the

system under test;
7. Explanation facility: the ability to identify the precise location

and cause of faults;
8. Modeling requirements: lower modeling requirements ease im-

plementation and application on real-time processes;
9. Storage and computational requirements: minimal storage and

computational requirements are necessary for an easy imple-
mentation and application on real-time processes;

10. Multiple fault identifiability: the ability to diagnose multiple
simultaneous faults.
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8.2.2 virtual sensors

Virtual sensors have been used successfully in various fields, both
for observing hidden unmeasured quantities in the system and for
validating the system’s status. An example of the former can be found
in [111], where the authors study spark-ignition engines in avionics.
They develop virtual sensors for quantities for which a physical sensor
would have been too expensive to deploy, or too slow at collecting
data. They use artificial neural networks to predict measurements
from other sensors’ readings. Other authors use virtual sensors to
estimate tire forces in automotive systems [112]. They use Kalman
filter, ANN and physical relations between measurable quantities in
the system such as wheel speed.

An example of virtual sensors used for data validation can be found
in [78], where the authors present an approach for sensors data valid-
ation and reconstruction and apply it to urban water distribution sys-
tems. Raw data undergoes several tests, from low-level tests checking
elementary properties of signals to high-level tests exploiting spatial
consistency between different sensors.

In complex systems, it is not trivial to design effective virtual sensors,
due to the large combination of available inputs but also to the di-
versity of modeling techniques. While a popular approach is to use
general purpose simulation software, there is research effort to pro-
duce software tools able to create and parametrize modular virtual
sensors [113].

Li et al. present a review of virtual sensing techniques in the con-
text of building systems [51]. Virtual sensors have been successfully
applied to fields such as process control and the automotive sector for
more than two decades, and building systems could benefit from their
application. e.g., many of the FDD techniques proposed for buildings
cannot be applied in practice due to sensors not available in real build-
ings or not accurate enough. Virtual sensors can be used to overcome
these difficulties and generate high-quality measurements.

Virtual sensing techniques are categorized according to three differ-
ent criteria as shown in Figure 8.3: measurement characteristics-based,
modelingmethods-based and application purpose-based. In themeas-
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Virtual sensing techniques

Measurement
characteristics-based
Virtual sensors can either
represent steady-state or
transient measurements.

Modeling
methods-based

Virtual sensors use different
methods to generate their
output.

Data-driven
Model-based

Rule-based

Application
purpose-based

Virtual sensors are either
used as backup/redundancy
or observing.

Figure 8.3: Categorization of virtual sensing techniques according to Li et
al. [51].

urement characteristics category, virtual sensors can either represent
steady-state or transient measurements. In the former case, the model
is based on the assumption that the system responds instantaneously
to input variables, or that the measured quantities change slowly com-
pared to the system’s dynamics. In the latter case, slower reactions
and faster variating input variables are taken into account.

In modeling method category virtual sensors techniques can be
divided into model-based and data-driven, similarly to FDD methods.
In model-based techniques, detailed knowledge about the system such
as mathematical relations between sensors is used to create a model of
the sensor. In data-driven techniques, historical data is used to train
a black-box model of the system. Methods that are based both on
physical models and data trained models are called gray-box models.

With respect to application purposes, virtual sensors are either
used as backup/redundancy or observing. In the former case, virtual
sensorsmeasure quantities forwhich other physical sensors exist. They
can be used to validate such physical sensors’ readings together with
FDD methods or to replace them if they fail. In the latter case, virtual
sensors measure quantities unknown or even non-measurable in the
system, such as performance or efficiency, and make them available to
client applications.
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8.2 State of the Art

On ventilation units specifically, virtual sensors have been used both
to measure unknown quantities and to perform FDD. An example of
system monitoring can be found in [102], where the authors develop
a virtual sensor modeling exhaust airflow. Airflow sensors for exhaust
duct are rarely present in ventilation units due to their cost. They use
energy balance equation to relate other sensors in the system with the
airflow and propose two different models. While the local errors can
be large, the authors show how the cumulative residuals are small and,
therefore, the virtual sensor can be used to estimate daily averages.

In [104] the authors report how using virtual sensors significantly
improves FDD performance for HVAC systems. They propose a multi-
model FDDmethod that exploits components interdependencies. They
develop Bayesian networks for multiple operating modes, using both
physical and virtual sensors created from system knowledge and his-
torical data.

Other buildings subsystems have been considered for FDD using
virtual sensors. The method proposed in [101] is applied to air con-
ditioners using features decoupling and virtual sensors. The authors
create virtual sensors for several quantities, such as compressor power
consumption, refrigerant flow, condenser exit pressure, exit air hu-
midity and evaporation temperature. Virtual sensor performances are
tested both at steady state and under transients.

A method for FDD on air conditioners is proposed in [69]. The
author develops three different virtual sensors for virtual refrigerant
charge sensors using different techniques. Information from labor-
atory tests and manufacturers’ data was used to assess the impact
of faults on system performance. A complete implementation was
provided for a rooftop air-conditioning unit.

While not part of ventilation units themselves, room-level sensors,
i.e., temperature, CO2 level and relative humidity, are essential to their
correct operation. In [103] a data-driven model for virtual sensors for
room-level indoor air conditions is proposed. The authors develop
four data mining techniques, including artificial neural network, sup-
port vector machine regression and Pace regression. The obtained
virtual sensors can be used for validation and calibration of physical
sensors.
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8 Non-linear and Statistical Virtual Sensors

The reviewed state of the art shows that virtual sensors are popular
in the field of building systems; however, to our knowledge there is
no work so far on employing data-driven virtual sensors for fault de-
tection and diagnostics application on ventilation units. Most of the
work reviewed covers other buildings subsystems, such as chillers and
air-conditioning units [101, 51, 69], boilers [104], heat pumps [51] and
room-level components [103]. Moreover, in ventilation units, virtual
sensors are usually developed to provide readings for unmeasured
quantities [102], and when they are considered for explicit applica-
tion for fault detection and diagnostics they are designed using first
principles methods [51]. Other approaches focus on a higher level of
diagnostics and require significant expert knowledge to define fault
and symptoms [104]. Therefore, the main contribution of this paper is a
specific fault detection and diagnostics application for ventilation units based
on virtual sensors created using a data-driven approach.

8.3 material and methods

In this section, we describe the proposed method for FDD on ventila-
tion units based on virtual sensors.

A ventilation unit is an aggregate of several components, integrated
together to provide air exchange for the building. It is important that
every component works correctly, otherwise the performance of the
unit will deteriorate, causing energy loss and reducing comfort level
in the building.

Since all components work together, they exhibit common patterns
and shared phenomena. Even if there is no explicit redundancy in
the system, i.e., no duplicated sensor or meter, many of the quantities
in the unit are strongly correlated. In this paper, we propose to ex-
ploit these relations and create models to predict a quantity from the
surrounding ones, generating a set of virtual sensors. Given physical
sensors available in the ventilation unit S1,S2, … , Sn, a virtual sensor
S′
i measuring the same quantity of Si is created using a model f (⋅) that
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takes other sensors as input, i.e.,

S′
i = f (𝒮)

𝒮 ⊊ {S1,S2, … , Si−1,Si+1, … , Sn}.
(8.1)

For instance, consider a heating system where the following quantit-
ies are measured with sensors or meters: initial temperature T0, heater
energy M and final temperature Tf . A virtual sensor for final temper-
ature could be created using a model of initial temperature and heater
energy T′

f = f (M,T0). In principle, virtual sensors can be created for
any measure inside the system under test, it is not a requirement that
a real sensor exists.

Different methods can be used to compute the value of a virtual
sensor. When detailed knowledge about the unit is available it is
possible to use physical models, e.g., computing airflow using fan
speed and duct size and shape. Otherwise, it is possible to train black-
box models using data-driven techniques such as regression models,
artificial neural network or support vector machine.

A ventilation unit contains several sensors necessary to its functions,
such as temperature sensors at various locations, airflow and fan speed
at each fan and pump, and energy meters for different components.
However, not all of them are closely related to each other and, therefore,
it is important to carefully design each virtual sensor by choosing
quantities that are correlated. e.g., as shown in Figure 8.4, fan speed
and airflow through the same fan are obviously highly correlated,
while inlet air temperature and extract air temperature are independent
on each other.

8.3.1 fault diagnostics
When two correlated sensors, either physical or virtual, deviate, the
only possible inference is that a fault is affecting one of them. To dia-
gnose the faulty one, a third sensor is necessary. Under the assumption
of single simultaneous fault, when in a group of three sensors one
deviates from the other twos, the former is identified as faulty.
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Figure 8.4:Density plots showing correlations between fan speed and airflow,
and between inlet and extract temperatures. Darker colors correspond
to more frequent readings. The quantities on the left plot are highly
correlated, while the ones on the right one are essentially independent
on each other.

Due to cost and space constraints, duplicated sensors are rarely
available in ventilation units, and even less so are triplicated sensors.
However, these constraints do not impact virtual sensors, which can be
created without cost using data from other components. Some care is
necessary when choosing the inputs: different virtual sensors should
share as few inputs as possible because a fault in an input impacts all
its related virtual sensors.

For instance, consider a heating system with two initial temperature
sensors T0,T1, a heater energy meterM and a final temperature sensor
Tf , where two additional virtual sensors for final temperature were
created as

T′
f = f (M,T0), T″

f = f (M,T1). (8.2)

Assuming a single fault scenario, if T′
f and T″

f agree on their readings
and Tf deviates from them there are two possible causes:

– sensor Tf is faulty;
– heater energy meter M is faulty.
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This is because heater energymeterM is used as input in both virtual
sensors T′

f and T″
f , therefore, its fault impacts both their output.

8.3.2 measuring deviations from physical sensors
To automatically detect a fault, a measure of how much the virtual
sensors deviate from the physical one is necessary. Several tools are
available from statistical analysis, e.g., the maximal error or the norm
of residuals. For the first part of the case study, where we use linear
regression models to create virtual sensors, we use the coefficient of
determination, or R2 score, which gives an estimate of how much a
linear regression model fits the data [105]. Given a signal yi, i ∈ [1,n]
with mean y and its predictions ̂yi the R2 score is defined as

R2 = 1 −
Sum of squaresresidual
Sum of squarestotal

Sum of squaresresidual =
n

∑
i=1

(yi − ̂yi)2

Sum of squarestotal =
n

∑
i=1

(yi − y)2.

(8.3)

An R2 score close to 1 indicates that the model is a good fit for the
data, while values close to zero indicates the opposite. Negative values
indicate that the model predicts data worse than a constant horizontal
line.

We use the R2 score both to verify that the trained models fit the
testing data, i.e., that the designed model accurately follows the phys-
ical sensor, and to validate real-time data from the ventilation unit.
For each period of interest, e.g., every day, the R2 score for each virtual
sensor against the physical sensor is recorded. When the measure is
lower than a given threshold the pair virtual/physical sensors, are
flagged as anomalous or faulty.

R2 score is only meaningful for linear regression models and does
not yield useful value for non-linear ones. An alternative option for
detecting deviations from the physical sensor is to make the virtual
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Training Data Testing Data
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Model
Figure 8.5: Virtual sensors can generate an expected confidence interval.

When readings from the physical sensor fall outside such interval the
sensors pair is flagged as anomalous or faulty.

sensor generate an acceptable range of values. e.g., the acceptable error
could be as large as the largest error obtained when predicting the
original training data, or a confidence interval could be built from
training data. When readings from the physical sensor fall outside the
acceptable range the sensors pair is flagged as anomalous or faulty.
This approach is illustrated in Figure 8.5.

With both approaches, labelled faulty testing data would be neces-
sary to obtain accurate thresholds.

8.4 results and discussion
In this section, we implement the method presented in Section 8.3 on
a ventilation unit of an existing building. We detail the ventilation
unit structure and its sensors and components (Figures 8.6 and 8.7).
Afterwards, we design three virtual sensors based on linear regression
models to duplicate the readings of physical sensors, and we compare
physical and virtual readings to detect anomalous behaviors. Finally,
we design additional virtual sensors based on statistical and non-linear
regression models.
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Figure 8.6:Diagram of a ventilation unit in building OU44. Inlet air enters the
unit from bottom-left, passes through the heat exchanger and through
the heater, before entering the main shaft and supplying individual
rooms. From the rooms it enters again the main shaft, goes through
the heat exchanger to heat up inlet air, and finally is pushed outside
the building. Several sensors, shown by arrows, are available in the
unit.
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Figure 8.7:Diagram of a heating loop in building OU44. Hot water is used to
heat up the air before it enters the main shaft. Several sensors, shown
by arrows, are available in the loop.
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8.4.1 building ou44

In this paper, we present building Odense undervisning 44 (OU44)
as a case study [7]. It was built in 2015 at the University of Southern
Denmark, campus Odense, and it is mainly used for teaching. It
has three floors plus a basement and it contains classrooms, study
zones, offices, and auditoriums. It has four nearly identical ventilation
units, each serving one corner of the building, or roughly 20 thermal
zones.

A ventilation unit consists of a large air loop, as shown in Figure 8.6.
Inlet air enters the building, goes through a heat exchanger (HX),
then is heated to an appropriate indoor temperature and pushed to
the supply shaft, which is connected by variable air volume (VAV)
units to individual rooms. In the same way, exhaust air is collected
from individual rooms in the extract shaft, it goes through the heat
exchanger and it is pushed outside. The heat exchanger recovers
heat from exhaust air and transfers it to inlet air, reducing the energy
required by the heater. Air pressures in supply and extract shafts are
kept at constant values 130 Pa and 40Pa, which cause air to flow in the
rooms. Two fans in the ventilation unit generate the required airflows
to maintain the pressure setpoints.

Heaters, shown in Figure 8.7, use a hot-water loop, provided by a
district-heating system, to heat air inside the ventilation unit.

Several sensors, shown as arrows in Figures 8.6 and 8.7 are available
inside ventilation units and heating loops: air temperature at several
positions, airflows through the two fans, supply and extract pressure,
incoming and outgoingwater temperature, andwater flow through the
pump. In addition to that, several meters measure the activity of fans
and water pump: fan speed ωexhaust/post-HX, fan current iexhaust/post-HX
and voltage Vexhaust/post-HX, fan power and electrical consumption, and
pump electrical consumption.

Ventilation units only function during working hours, i.e., from
Monday to Friday from 7am to 6pm in local time. At night and during
weekends they are shut down.
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8.4.2 results using linear regression models

Three sensors were considered for monitoring in a ventilation unit:
post-heat exchanger temperature, airflow, and fan speed. For each of
them, two different models were constructed using other sensors as
inputs, as shown in Table 8.1. Linear regression models were used
under the assumption that inputs and outputs obey linear relations,
at least locally [106]. Since the periodicity of the system’s behavior
is one week, models were trained over a week-long historical data
from Monday 13 March 2017 to Sunday 19 March 2017 and tested
over two weeks from Monday 27 March 2017 to Sunday 9 April 2017.
This period was one of the longest ones with continuously available
data for every sensor in each ventilation unit. Training and testing
periodswerewithin the samemonth, therefore, no significant seasonal
variation that could influence the models was expected. Additional
care should be taken when this assumption does not hold, e.g., in this
particular case a teaching building could be configured to operate
differently during summer vacations.

For both training and testing phases, raw data from the building
management system was resampled to a common, fixed period of
10min. This step was necessary because the various sensors inside the
ventilation unit do not report at the same exact time. Regression mod-
els, on the other hand, require readings from different time-series to
be simultaneous. No other preprocessing operations were performed.
In particular, no faults were artificially added to data.

Another virtual sensor was also constructed, i.e., Effort (eff ), which
is proportional to an estimate of the power requested to the ventilation
unit and, therefore, to the airflow. By design, fans produce airflow
to maintain constant shaft pressure, which in turn depends on how
many VAV units are open in the building. When a VAV unit is open
it makes air flowing from the supply shaft through the room to the
extract shaft, which results in pressure loss. Fans will then increase
their speed to make up for such loss. Effort is an aggregate count of
those units, which makes it effectively a virtual sensor for an unknown
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Table 8.1: Virtual sensors definitions for linear regression models.

Model Name Output Inputs

Model A Tpost-HX Tinlet, Textract, qpost-HX
Model B Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
Model C qpost-HX eff Equation (8.4)
Model D qpost-HX ωpost-HX
Model E ωpost-HX qpost-HX
Model F ωpost-HX ipost-HX, Vpost-HX

quantity in the ventilation unit, and is defined as

eff = ∑
i∈VAV units

τi

τi = openness ratio of VAV unit i
q ∝ eff Δp.

(8.4)

Table 8.2 shows the coefficients obtained for models with multiple
input variables. Most variables have coefficients significantly larger
than their standard deviation, therefore, they are significant in their
relative models. Two exceptions are water flow and incoming water
temperature in Model B, whose contributions are smaller.

The three charts in Figure 8.8 show results for Tpost-HX, qpost-HX and
ωpost-HX virtual sensors. Data obtained from physical sensors are plot-
ted against data obtained from the two corresponding linear regression
virtual sensors defined in Table 8.1. Deviation from a single virtual
sensor is enough to detect a fault but not to isolate and identify the
faulty source, therefore, two virtual sensors were used for each phys-
ical one. R2 scores between physical and predicted readings, which
measure how much physical and virtual sensors agree, were com-
puted over daily data as defined in Equation (8.3) and are shown
in Table 8.3. Low R2 scores, indicating that models deviate from the
physical sensors, are highlighted in boldface.

For temperature two models are used, one (Model A) exploiting
knowledge about the heat exchanger interactions, using inlet temper-
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Figure 8.8: Comparison between physical sensors and linear regression
model-based virtual sensors for post heat exchanger temperature, air-
flow, and fan speed during working hours (from 8am to 5pm) over
two weeks. Outside working hours and during weekends the vent-
ilation system is shut down. The virtual sensors follow the physical
ones except in two cases. On Friday in the first week the temperature
sensor oscillates strongly and deviates from the two virtual sensors. On
Tuesday in the second week the virtual sensors Model B consistently
overestimates the sensors readings.

163



8 Non-linear and Statistical Virtual Sensors

Table 8.2: Coefficients for linear regression models.

Variable Coefficient

Model A (Tpost-HX)
Tinlet 0.49 ± 0.012
Textract 0.23 ± 0.017
qpost-HX 9.86 × 10−2 ± 1.404 × 10−2

Model B (Tpost-HX)
Tinlet 0.68 ± 0.021
Tincoming −0.05 ± 0.027
Toutgoing −0.16 ± 0.014
qwater 0.03 ± 0.026
Model C (qpost-HX)
eff 2375 ± 90.2
Model D (qpost-HX)
ωpost-HX 2766 ± 25.0

Model E (ωpost-HX)
qpost-HX 85.2 ± 0.770

Model F (ωpost-HX)
ipost-HX 14.84 ± 1.308
Vpost-HX 71.58 ± 1.308

ature, extract temperature and airflow, i.e.,

Heat = c (Tpost-HX − TInlet)(ρ Δt qpost-HX)

= c (TExhaust − TExtract)(ρ Δt qExhaust),
(8.5)

where c, ρ and Δt are respectively air specific heat, air density and time
step, and other symbols indicate quantities measured by sensors as
shown in Figure 8.6. The other one (Model B) relies on similar but
less structured relations between inlet temperature, water flow and
temperature difference in the heater. The former predicts temperature
value much more accurately than the latter. Table 8.3 shows that both

164



8.4 Results and Discussion

Table 8.3: Prediction R2 score for virtual sensors. Low scores are highlighted
in boldface.

Tpost-HX qpost-HX ωpost-HX
Date Model A Model B Model C Model D Model E Model F

2017-03-27 0.955 0.782 0.371 0.987 0.988 0.997
2017-03-28 0.989 0.804 0.04 0.98 0.977 0.997
2017-03-29 0.839 0.217 0.368 0.992 0.992 0.995
2017-03-30 0.894 0.729 0.681 0.956 0.956 0.996
2017-03-31 −1.162 −1.995 0.572 0.852 0.908 0.996
2017-04-03 0.86 0.442 0.87 0.967 0.968 0.997
2017-04-04 0.886 −0.474 0.644 0.983 0.984 0.997
2017-04-05 0.774 0.57 0.8 0.944 0.953 0.996
2017-04-06 0.73 0.654 0.622 0.988 0.989 0.997
2017-04-07 0.802 0.537 0.772 0.904 0.932 0.996

models deviate significantly from the physical sensor on 31 March
2017, and Model B deviates also on 4 April 2017. Readings from the
physical sensors are shown in Figure 8.9with respect to the twomodels’
error ranges, which corresponds to the predictions plus the maximal
training error.

On 31 March 2017, the physical sensor’s readings oscillate strongly,
in contrast with the two virtual sensors which have a smoother beha-
vior and fall outside the models’ error ranges. Since the two models
share an input variable, i.e., inlet temperature, this situation could
be caused by a fault in the physical post heat exchanger temperat-
ure sensor or in the inlet temperature sensor. Figure 8.10 shows the
readings for all involved sensors over the faulty period. All measures
except post heat exchanger temperature have smooth trends and be-
have similarly to the previous day. Inlet temperature rises more than
the first day, but it is consistent with outdoor temperature measure-
ments from the local weather station. This suggests that post heat
exchanger temperature is indeed the faulty sensor. The anomalous
behavior only lasts for a single day; therefore, this event cannot be
classified as a sensor failure, and it could be due to an external dis-
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Figure 8.9: Comparison between physical sensors and acceptable ranges ob-
tained from linear regression model-based virtual sensors for post heat
exchanger temperature during working hours (from 8am to 5pm) for
selected days. The sensors readings fall inside the acceptable ranges
except on 31 March 2017, when they deviate significantly. The anomal-
ous trend is not present neither in previous or following days. On 4
April 2017, most models consistently overestimate the physical sensors,
but their trends are similar.

turbance. A further on-site investigation would be necessary to finally
identify the precise nature of this event.

The situation on 4 April 2017 is less extreme. Model B consistently
overestimate the physical sensor’s readings, but the overall trend is
similar and, moreover, all the readings fall inside the model’s error
range. Therefore, this event could be classified as a false alarm. Using
a more accurate model instead of Model B could reduce the frequency
of false alarms.

For airflow two models are used, one using only effort as input
(Model C) and one using only fan speed as input (Model D). Air-
flow and fan speed follow the fan laws and are proportional to each
other [107], which could also be inferred from Figure 8.4, and as
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Figure 8.10: Trends of input and output variables in models A and B on
Thursday 30 March 2017 and Friday 31 March 2017. Input variables
have similar trends over the two days, but the output variable, post heat
exchanger temperature, exhibits fast oscillation during the second day.
Inlet temperature, the shared input variable between the two models,
behave similarly over the two days, following the outdoor temperature
measured at the local weather station. During the second day the hot
water flow is zero, and incoming temperature is equal to outgoing
temperature.
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expected predictions for this model are nearly exact.
Model C is less accurate, and its R2 score on Tuesday 28 March 2017

is very low, which suggests a fault in the virtual sensor’s input, i.e.,
ventilation effort, since Model D agrees with the physical sensor on
the same day. Ventilation effort is produced by aggregating several
independent streamswith frequent periods of missing data, which can
indeed cause the model to deviate from the physical sensor. Moreover,
ventilation effort does not take into account the size of each room and
the corresponding VAV dampers, which reduces the model’s accuracy.
Readings from the physical sensors are shown in Figure 8.11 with
respect to the two models’ error ranges, which corresponds to the
predictions plus the maximal training error.

For fan speed two models are used, one using airflow as input
(Model E) and one using fan current and voltage as inputs (Model
F). Fan speed is proportional to airflow due to fan laws, and also
proportional to the fan power consumption, which in turn depends on
current and voltage W = VI. The former model is nearly exact, for the
same reasons explained when discussing Model C. The latter model
estimates the power used by the fan, which in turn is correlated with
the fan speed, and produces accurate results as well.

8.4.3 results using other models

While linear regressionmodels were able to detect unusual behavior of
post-heat exchanger temperature sensor, in some cases they did not ac-
curately predict the values of physical sensors. Four additional models
were created, as shown in Table 8.4: two using ARMAX method from
statistical analysis [114], and two using non-linear regression methods
support vector machine (SVM) [115] and artificial neural network
(ANN) [116]. The two approaches augmented linear regression mod-
els along two different directions: ARMAX models are linear models
over exogenous variables, but they take the endogenous variable’s
recent trend into account; ANN and SVM models can instead perform
non-linear regression by projecting input data to higher dimensional
spaces through non-linear transformations and then performing lin-
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Figure 8.11: Comparison between physical sensors and acceptable ranges
obtained from model-based virtual sensors for post heat exchanger
airflow during working hours (from 8am to 5pm) for selected days.
On Tuesday 28 March 2017 Model C deviates significantly from the
physical sensor, but readings always fall inside the acceptable range
for the entire period.

ear regression. ANN and SVM have both been successfully used in
FDD [41, 39, 40].

ARMAX models

Models ARMAX A and ARMAX B were trained using post-heat ex-
changer temperature as endogenous variable and input sensors from
respectively models A and B as exogenous variables. Models SVM
and ANN were trained using the same inputs as Model B. As for lin-
ear regression models, they were trained over a week-long historical
data from Monday 13 March 2017 to Sunday 19 April 2017 and tested
over two weeks from Monday 27 March 2017 to Sunday 9 April 2017.
As for the experiment with linear regression models, raw data was
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Table 8.4: Virtual sensors definitions for other models.

Model Name Output Inputs

SVM Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
ANN Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
ARMAX A Tpost-HX Tpost-HX, Tinlet, Textract, qpost-HX
ARMAX B Tpost-HX Tpost-HX, Tinlet, qwater, Tincoming, Toutgoing

resampled to a common, fixed period of 10min.
In ARMAX models data belonging to nights and weekends were re-

moved, i.e., the dataset consisted of continuous working hours. Work-
ing and non-working hours correspond to significantly different oper-
ation profiles, and since ARMAX methods predict future values based
on recent history, they would not perform well when predicting across
both. Two different model should instead be created, one for each
profile. Since the ventilation system is turned off during non-working
hours, in this paper we ignored this case, but in more complex situ-
ations where working hours are not fixed, e.g., they depend on the
weekday, it would be necessary to split the dataset into distinct parts
corresponding to each profile.

Data sampling periodwas 10min,model orderswere set to (p, q, d) =
(20, 2, 0) and prediction horizon was set to one working day, i.e., 10 h.
Virtual sensors readings are shown against physical sensors readings
in Figure 8.12. The virtual sensors follow closely the physical sensor,
except on Friday 31 March 2017 and on Monday 3 April 2017. During
the former day, the physical sensor strongly oscillates while the virtual
sensors predict a regular trend, in agreement the linear regression
virtual sensors. On the latter day, the virtual sensors seem to fail to cap-
ture the rising and falling trend from the physical sensor, predicting a
straighter line.

Readings from the physical sensor are shown in Figure 8.13 with
respect to the two models’ error ranges, which corresponds to the
predictions plus the maximal training error. On Friday 31 March 2017,
the physical sensor’s readings fall far outside the acceptable range,
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Figure 8.12:Comparison between physical sensors andARMAXmodel-based
virtual sensors for post heat exchanger temperature, airflow, and fan
speed during working hours (from 8am to 5pm) over two weeks. Out-
side working hours and during weekends the ventilation system is shut
down. The virtual sensors follow the physical ones except in one case.
On Friday in the first week the temperature sensor oscillates strongly
and deviates from the two virtual sensors.

which suggests a fault in the sensors pair. On Monday 3 April 2017,
despite the trends being different, all readings fall inside the acceptable
range.

non-linear regression models

Model SVM uses support vector machine regression with radial basis
function kernels and parameters set to C = 100,γ = 0.04. Model
ANN uses an artificial neural network with 200 hidden layer neurons.
Parameters for both models were optimized over the training periods.
Only working hours were considered, as with the other models. Both
models use the inputs as the Model B described in Table 8.1.

Virtual sensors readings are shown against physical sensors read-
ings in Figure 8.14. The virtual sensors follow closely the physical
sensor, except on Friday 31 March 2017 and on Tuesday 4 April 2017.
During the former, day the physical sensor strongly oscillates while
the virtual sensors predict a more regular trend, in agreement the
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Figure 8.13: Comparison between physical sensors and acceptable ranges
obtained from ARMAX model-based virtual sensors for post heat ex-
changer temperature during working hours (from 8am to 5pm) for
selected days. The sensors readings fall inside the acceptable ranges
except on Friday 31 March 2017, when they deviate significantly. The
anomalous trend is not present neither in previous or following days.
On Tuesday 4 April 2017, most models consistently overestimate the
physical sensors, but their trends are similar.

linear regression virtual sensors. Model SVM also predict oscillations,
but significantly weaker than the physical sensor. On the latter day,
the virtual sensors consistently overestimate the physical one, as it
happens with Model B.

Readings from the physical sensor are shown in Figure 8.15 with
respect to the two models’ error ranges, which corresponds to the
predictions plus the maximal training error. On Friday 31 March 2017,
the physical sensor’s readings fall far outside the acceptable range,
which suggests a fault in the sensors pair. On Monday 3 April 2017,
despite virtual sensors overestimate the physical ones, all readings fall
inside the acceptable range.
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Figure 8.14: Comparison between physical sensors and non-linear regres-
sion model-based virtual sensors for post heat exchanger temperature,
airflow, and fan speed during working hours (from 8am to 5pm) over
two weeks. Outside working hours and during weekends the vent-
ilation system is shut down. The virtual sensors follow the physical
ones except in two cases. On Friday in the first week the temperature
sensor oscillates strongly and deviates from the two virtual sensors.
On Tuesday in the second week the virtual sensors ANN and SVM
consistently overestimate the sensors readings.

8.5 conclusions and future directions

8.5.1 conclusions
We proposed a technique to exploit relations between physical quant-
ities inside a ventilation unit to create virtual sensors, introducing,
therefore, virtual redundancy. We applied this technique to ventila-
tion units in a real building, creating virtual sensors for each of three
existing sensors: temperature, airflow, and fan speed. We applied
our method to one of the ventilation units in an existing building and
we noted how on a particular day all virtual sensors for temperature,
regardless of the model and input sensors used, deviated from the
physical sensor. Its trend was, therefore, detected as anomalous.

Virtual sensors can be developed using a multitude of diverse mod-
els, with varying accuracy in predicting physical quantities in the
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Figure 8.15: Comparison between physical sensors and acceptable ranges
obtained from non-linear regression model-based virtual sensors for
post heat exchanger temperature during working hours (from 8am to
5pm) for selected days. The sensors readings fall inside the acceptable
ranges except on Friday 31 March 2017, when they deviate significantly.
The anomalous trend is not present neither in previous or following
days. On Tuesday 4 April 2017, most models consistently overestimate
the physical sensors, but their trends are similar.

system. At first, we employed linear regression models, under the
assumption that the related quantities obey linear relations, at least loc-
ally. Afterwards, we used ARMAX methods from statistical analysis,
where the current value of a sensor was predicted from its history
together with the input sensors. Finally, we developed two virtual
sensors using non-linear models such as SVM regression and ANN.

Weproposed twodifferent techniques tomeasure deviations between
physical and virtual sensors. R2 score estimates how good a linear
model fits some data. For non-linear models, the R2 score is mean-
ingless, therefore, we also used acceptable ranges obtained from the
maximal training error. The virtual sensors predicted the values of
physical sensors with satisfactory accuracy, and large deviations cor-
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responded to actual anomalous behavior.
Contrary to physical redundancy, virtual redundancy does not in-

crease cost and complexity but carries similar advantages, and several
applications can profit from it. e.g., fault detection and diagnostics
(FDD)methods, such as the one proposed in this paper, and automatic
FDD methods can compare duplicated signals and detect when they
diverge from each other. Fault-tolerant control can be achieved by
duplicating a physical sensor with a virtual one, so that the system
can continue functioning even if it fails. Sensors fusion enhances read-
ings from a physical sensor with readings from other ones, improving
measurement accuracy. Expensive physical sensors can be replaced
by virtual ones in constrained systems, reducing costs and complexity.

In modern buildings, what sensors should be included in a ventila-
tion unit is currently an open question. Sensors can be expensive and
increase the construction complexity of a ventilation unit; however,
they are necessary for its correct operation and useful for diagnostics.
Virtual sensors are a promising technique that can decrease cost and
complexity without compromising functionality or decreasing reliab-
ility.

The proposed methodology suffers, however, from some limitations.
Data must be available both to create the virtual sensors’ models and
to monitor the ventilation unit. Therefore, a system for data collection
and storage must be set in place, which could be difficult for older
buildings. Data collection should be reliable, i.e., periods of missing
data, or ‘data holes’ should be rare, and readings should be validated
to ensure the models correctly represent the system. Choosing inputs
for virtual sensors model is challenging, and so is choosing the type of
model. Complex models can be accurate, but also difficult to develop
and can have parameters to estimate, while simple models may not be
able to reproduce the entire dynamics of the system.

8.5.2 future directions

While the application of the presented method for FDD on ventilation
units using virtual sensors yielded promising results, more work is
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necessary to design and implement an automatic FDD framework.
Automatic FDD is necessary to reduce operation cost and increase
energy efficiency of buildings [75]. Moreover, comprehensive experi-
ments should be set up to assess the actual benefits of this method [61].

We performed manual FDD by noticing how for one day the R2

score between physical and virtual temperature sensors changed ab-
ruptly and significantly, and physical sensors’ readings fell outside
the acceptable range, which suggested a fault. However, a proper
threshold system must be set up to achieve automatic FDD. This can
be achieved by using expert knowledge and a training set of labelled
faulty historical data, or by generating faulty data using simulations.
Moreover, the temperature sensor exhibited faulty behavior only for a
single day during the first week, while it appeared to work correctly
for the rest of the testing period. Therefore, a threshold system should
also be used to decide whether a significant but short-lived deviation
is a fault.

We developed virtual sensors using linear and non-linear regression
models, together with statistical analysis techniques. Better perform-
ance could be achieved by using more advanced methods, such as
simulation using energy models of the ventilation units [2]. Moreover,
to decide what inputs to use for virtual sensors, we reasoned about the
physical relations between quantities inside the ventilation unit. While
this approach might lead to accurate results, it could be ineffective for
more complex systems. An automatic method could be employed to
automatically select inputs and design effective virtual sensors, such
as the one presented in [113].

We used regression models to predict data during a period close to
the one used for training, under the assumption that the system’s be-
havior did not change significantly. When extending the prediction to
other periods, this assumption might not hold anymore, and seasonal
variations must be taken into account.

Finally, in this paper we applied the proposed methodology to sen-
sors in a ventilation unit. Other buildings subsystems could benefit
from virtual sensors, e.g., heating loops, lighting, or room-level equip-
ment. Additional work would be necessary to identify inputs and
models and to extend the methodology to each of such subsystems.
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chapter 9detecting anomalous
components using consensus

among multiple peers
This chapter is a cosmetic adaptation of the following journal paper.

Claudio Giovanni Mattera, Hamid Reza Shaker and Muhyiddine
�

Jradi. ‘Consensus-based Method for Anomaly Detection in VAV Units’.
In: Energies 12.3 (1st Feb. 2019). issn: 1996-1073. doi: 10.3390/
en12030468

abstract
Buildings account for large part of global energy consumption. Besides
energy consumed due to normal operation, a large amount of energy
can be wasted due to faults in buildings subsystems.

Fault detection and diagnostics techniques aim to identify faults
and prevent energy waste, but are often difficult to apply in practice.
Data-driven methods, in particular, require an adequate amount of
fault-free training data, which is rarely available.

In this paper, we propose a method for anomaly detection that
exploits consensus among multiple identical components. Even if
some of the components are faulty, their aggregate behaviour is overall
correct, and it can be used to train a data-driven model.

We test ourmethod on variable-air-volume units in an existing build-
ing, executing two experiments grouping the components according
to ventilation unit, and according to room type. The two experiments
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identified the same set of anomalous components, i.e. their behaviour
was different from the rest of the group in both cases, and this suggests
that the anomaly was not due to wrong group assignment.

The proposed method shows the potential of exploiting consensus
among multiple identical systems to detect anomalous ones.

9.1 introduction
Nowadays, buildings have a large impact on both energy consump-
tion and other environmental effects such as carbon emissions. In the
European Union they are responsible for 40% of the total energy usage
and 36% of CO2 emissions [12, 26]. Similarly, in the United States, they
are responsible for about 41% of primary energy consumption in 2010,
which was 44% more than transports and 36% more than industry.
Total building primary energy consumption in 2009 was about 48%
higher than in 1980, going from 1290TWh to 2784TWh [16]. It is,
therefore, evident that buildings are a key sector for achieving envir-
onment and climate targets such as 20 20 by 2020, i.e. 20% reduction
in greenhouse gases and 20% share of renewable energy sources by
year 2020 [21], and the more recent 30% energy efficiency by year
2030 [22].

Modern commercial buildings contain large and complex systems,
such as heating, ventilation and air conditioning (HVAC) and lighting,
and their operation is controlled by automated building management
systems (BMSs), which often require a network of sensors, meters
and actuators. Faults in these systems impact building operations, e.g.
by causing occupants discomfort, but also increase energy usage. The
most common faults in commercial buildings in U. S. are estimated
to have caused over 3.3 billion dollars in energy waste in 2009 [36],
and over 7 billion dollars in 2017 [37]. It is often difficult to precisely
identify faults, and sometimes even to detect them, and a system could
operate for a long time before the building management even notices
it is not working correctly [1]. Fault detection and diagnostics (FDD)
techniques aim to detect faults and identify their precise location
and cause. Research and application of FDD techniques, applied
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successfully in other fields for several decades, gained traction in the
buildings sector in the past few years.

Ventilation units are among the largest and most critical systems
in buildings, and account for large energy consumption. Their faults,
such as incorrect HVAC on/off modes or inappropriate setpoints for
thermostats, are responsible for a large share of energy waste [37].
While many FDD techniques have been applied to the large air hand-
ling unit (AHU), faults and misconfigurations involving variable air
volume (VAV) units at room level are often ignored [117]. However,
considering that the VAV units have the main responsibility of direct
air supply to each room, and taking into account the importance of
attaining good indoor air quality and thermal comfort, proper monit-
oring and FDD investigations of VAV units seems very sensible.

Many FDD techniques have major limitations when applied in prac-
tice, due to non-ideal conditions of the real world. Model-based tech-
niques require detailed knowledge of the system under test, which is
often not available. Data-driven techniques, on the other hand, require
validated and fault-free historical data to learn the correct behaviour of
the system. Historical data is often available, but it is rarely validated,
and there is a risk that faulty behaviour is used in the training phase.

Peer validation and consensus-based validation, on the other hand,
can be used tomitigate this issue. Multiple identical or similar systems
are considered together, under the assumption that the majority of
them operate correctly. When their historical data is used to train a
model, the contributions from faulty systems are small compared with
the ones from healthy ones, and their effect on the model is diluted.
Therefore, the requirement for fault-free training data is lifted, and
faulty systems are identified as outliers among the healthy ones. This
eliminates the need for complex and sophisticated models and large
system operation datasets.

The rest of the paper is organized as follows. The state of the art
is reviewed in Section 9.2. The proposed technique is introduced in
Section 9.3. Section 9.4 presents the case study and discusses results
and implications. Finally, conclusions are drawn in Section 9.5.
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9.2 state of the art
Kim et al. present a comprehensive review of recent FDD methods
for building systems [41]. The authors identify three main categories,
depending on the approach used: model-based methods, data-driven
methods and rules-based methods.

In model-based methods, an explicit model of the system under test
is created, using first principles physics, physics and other system and
envelope modelling techniques. Results obtained from the model are
compared with the ones obtained from the actual system, and, if the
two deviate, a fault is detected. Model-based methods have usually
high accuracy and can detect faults with smaller impacts, as well as
faults absent from historical data. By modifying the model, it is pos-
sible to simulate faulty conditions, which makes possible to precisely
diagnose faults. On the other hand, such models require extensive
knowledge of the system under test and cannot easily be extended to
other systems. Correctly estimating the model’s parameters is also a
challenge [118].

In data-driven–or history-based–methods, a model of the system
under test is created from historical data. Several techniques exist,
such as artificial neural networks, principal component analysis and
statistical machine learning algorithms. The model is treated as a
black box and no understanding of the system is necessary. For this
reason, these methods can often be easily extended to other systems by
simply re-training the model from different data. On the other hand,
a relatively large amount of fault-free historical data must be available
to train the model. This makes data-driven methods unsuitable for
newly deployed systems and for situations where historical data is not
provably fault-free. Independent sets of labeled faulty data are often
necessary to perform precise fault diagnostics and identification.

In rule-based methods, a set of rules describing the behaviour of the
system under test is defined. Rules are usually obtained from expert
knowledge and technical documentation, and can describe both correct
and faulty behaviour, which makes possible to precisely diagnose
faults. No training data is necessary, and only a high-level knowledge
of the system is needed. However, rules can only represent relatively
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simple systems and cannot properly describe complex interactions.
To the best of our knowledge, no previous work has been done on

using consensus-based techniques for FDD in building systems, and
specifically on VAV units used to control CO2 level. Narayanaswamy
et al. present a model, cluster and compare method for FDD on VAV
units, where data from several units are used to detect anomalies [117].
Linear models are trained for each individual VAV unit, and the ob-
tained parameters undergo a clustering procedure. Units that do not
belong to any cluster are identified as anomalous and, finally, the res-
ults are used to generate a set of expert rules for anomaly detection.
The authors deploy and test their method on a real building, and use
it to detect anomalies with respect to temperature control in rooms.

Consensus techniques have been used in the field for other purposes,
such as features selection. Partially redundant measurements in com-
plex systems such as HVAC systems can make it difficult to apply FDD
methods, which are often not designed to handle conflicting inputs or
large amounts of inputs. Yuwono et al. present a method for feature
selection using swarm intelligence and consensus clustering, which
can be used to reduce and aggregate the number of features used in
FDD methods. [119]. Consensus clustering has the advantage that
the number of clusters is not fixed in advance, instead, clusters are
identified automatically.

Consensus-based techniques have also been used for FDD in other
fields. FDD methods often use data and findings from models and
laboratory tests to validate or predict data for systems in the field.
Differences from the model, and different conditions between tests
and the real world, can reduce methods accuracy and effectiveness.
Byttner et al. present a FDD method for vehicles based on consensus
between suchmodels and tests, and on-field systems [120]. Data is first
preprocessed on-vehicle and interesting features are identified, which
are sent to a central server that collects them for all vehicles. The central
server searches for outliers, i.e. features from a single vehicle that do
not match the overall distribution across the entire fleet, laboratory
tests, or models. The authors prepare two different experiments, one
for detecting faults in cooling systems for large vehicles, and one for
detecting faults in hard-drives. In the former experiment, only a single
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real vehicle was used in multiple different driving conditions and
paired with a simulated one, however, in the latter experiment, several
different hard-drives were used.

Bianchin et al. propose another example of consensus-based tech-
niques: a method for FDD in sensors networks based on clustering
and consensus [121]. A token travels across the sensors network, gath-
ering measurement as it visits each node, and computing similarity
among them. When a faulty node is present, it is isolated to its own
cluster, while connectivity among the other nodes is maintained. The
method is shown to be used for static estimation, i.e. when the meas-
ured quantity is constant over time, and also for dynamic estimation,
i. e., when the measured quantity changes over time and the network
must produce a real-time estimation.

Consensus-based techniques are popular in the field of fault-tolerant
control, where multiple and partially redundant agents propose con-
current decisions. Such decisions can lead to conflicts due to faults in
the system, but also due to noise, missing information or other causes.
Multiple agents can then negotiate between each other or be excluded
by the majority until a consensus is reached.

Davoodi et al. present a method for consensus control in multi-agent
systems and report an experiment on autonomous unmanned under-
water vehicles [122]. Zhou et al. present a method for actuator fault
estimation in multi-agent systems, where agents can asymptotically
converge to a common strategy with bound errors [123].

Consensus-based algorithms are also a popular approach for dis-
tribute decision support systems. Lee et al. present a technique to
control a multi-microgrid using consensus between peers [124]. Liu
et al. present a technique for energy sharing in the context of com-
munity energy internet, where a global objective function is optimized
through consensus among peers [125].

Table 9.1 summarizes the advantages and disadvantages of cat-
egories of FDD methods. Traditional data-driven methods do not
require deep knowledge of the system, support complex dynamics,
and can be easily generalized to other systems. However, their main
disadvantage is to require fault-free historical data to train a model.
Consensus-based data-driven methods, on the other hand, replace
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this requirement with the one for multiple identical systems, while
maintaining the other advantages.

9.2.1 problem statement
Data-driven methods offer several advantages for FDD, however, they
have a major drawback of requiring fault-free training data, which is
rarely available in practice. If historical data was generated by a faulty
system, the resulting model would later recognize similar faults as
healthy conditions, reducing its effectiveness in detecting faults. This
chicken-and-egg situation is a significant problem in applying FDD
techniques: a model is necessary to validate data, but validated data
is necessary to construct a model.

In this paper, we propose to solve this problem by training an ‘ag-
gregate’ model using historical data from a large number of identical
or similar systems. Systems whose behaviour significantly deviates
from the aggregate behaviour are detected as anomalous. While we
cannot ensure that all systems work correctly, we assume that only
a small part of them is faulty and that they are not affected by the
same fault. Therefore, the individual faults would have a small impact
during training, and the resulting model would be largely unaffected.

9.3 consensus-based method for anomaly
detection

Themethod proposed in this paper analyzes time-series frommultiple
similar systems. Correct and anomalous conditions are defined based
on the consensus from all the systems.

The main intuition of this method, illustrated in Figure 9.1, is to find
sequences of events in multiple, related time-series and group them
in episodes, where each episode represents a qualitative phenomenon.
E.g. if CO2 level rises, then the ventilation flow rate should increase,
due to the BMS acting to maintain good air quality. Episodes are,
therefore, a sequence of events belonging to a group of time-series.
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Table 9.1: Advantages of FDD methods. Consensus-based methods have similar advantages and disadvant-
ages to traditional data-driven methods. Their respective trade-offs, underlined in the table, are the
requirements for multiple identical systems, and the requirement for fault-free historical data.

Data-driven Model-based Rule-based
Traditional Consensus-based

Advantage
Supports complex dynamics ✓ ✓ ✓
Has high accuracy ✓
Can be easily generalized to other systems ✓ ✓
Does not require detailed knowledge ✓ ✓ ✓
Does not require expert knowledge ✓ ✓
Does not require fault-free historical data ✓ ✓
Does not require multiple identical systems ✓ ✓ ✓
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Figure 9.1:Overview of consensus-based FDDmethod. Events are computed
for each time-series from historical data. Episodes, i.e. sequences of
events belonging to different time-series, are used to construct a data-
base containing the normal qualitative behaviour. At run-time, events
and episodes are computed from real-time data and compared with
the database, and optionally added to the database.

A database of episodes is obtained from historical data from several
groups of time-series. Frequent episodes are assumed to happen dur-
ing correct conditions, while rare or unknown episodes are assumed
to be symptoms of anomalous behaviour. Episodes are later computed
from real-time data and compared with the episodes in the database.
When a large part of real-time episodes corresponds to episodes rarely
encountered in historical data, i.e., when the current behaviour of the
system is qualitatively different from its historical one, the system is
flagged as anomalous.

The episode database can optionally be updated with new episodes
computed from real-time data. This would allow to track seasonal
variations and, moreover, to apply the method on a newly deployed
system without using a separate training phase. In that case, the
episodes databasewould be gradually populated over time, and earlier
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Identical systems Episodes database

Two faulty systems
out of twelve

Aggregate Behaviour

Figure 9.2: Effect of faulty systems in consensus-based methods. If a small
number of systems used in training are faulty, their contributions will
be diluted among the ones by correctly operating systems.

results could be inaccurate.
In order to avoid the necessity of validated fault-free training data,

consensus between multiple similar systems can be exploited. Assum-
ing that only a small part of the systems used in training are faulty or
exhibit anomalous behaviours, their episodes would be overwhelmed
by the episodes of the rest of the systems, as illustrated in Figure 9.2.

In order to obtain a consistent common behaviour, systems should
be grouped by common characteristics. E.g. multiple rooms could
be divided by room type, but also by room location, such as by floor
number or building side, or by other characteristics. When a room
shows anomalous behaviour within its group, it could be due to faulty
components, but also to incorrect or insufficient grouping, as shown
by Narayanaswamy et al. in [117]. E.g. the only classroom on the top
floormight deviate from all other classrooms, which are on the ground
floor, due to different thermal loss. Multiple orthogonal characteristics
should be used to avoid this possibility, such that systems which are
anomalous in several groups are effectively labeled as anomalous.

Compared with a traditional approach of clustering based on model
or statistical parameters, such as mean or variance, using episodes
allows to represents interactions between different measurements over
time. Such interactions, or lack thereof, can be qualitatively linked to
physical phenomena within the system, and are learnt from aggregate
historical data. Moreover, when updating the episodes database with
episodes computed from real-time data, this method adapts to slow
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seasonal variations in the system’s dynamics.
In the rest of this section, we describe the procedure for data prepro-

cessing and preparation, we define events and episodes, and, finally,
we describe how to monitor multiple time-series to detect anomalies.

9.3.1 data preprocessing and preparation

Time-series can be divided into two categories depending on the nature
of the measured quantity. Time-series with a large number of readings
changing gradually over time, such as temperature or CO2 level, are
called continuous time-series. Time-series with values defined over a
finite and small domain, such as on/off, or a predetermined number of
states, which are constant for long periods and change value abruptly,
are instead called discrete time-series.

In order to extract episodes from a group of time-series, it is first
necessary to extract events from each of them. An event is a qualitative
local trend of a time-series. Events are defined and extracted differently
for continuous and discrete time-series, as illustrated in Figure 9.3 and
described in the following.

events for continuous time-series

The following method, based on the one presented by Pisón et al. in
[126], is used to extract events from continuous time-series.

Continuous time-series have many readings and are often subject to
noise. In order to identify the high-level trend without accounting for
small deviations, the time-series are first filtered with a lowpass filter.
This operation is necessary to leave out low-order variations that do
not impact significantly the system under test.

The next step is to find important points in time-series, which are
defined as follows. Consider a time-series ai, where i ∈ ℤ is the time
index, and ai is the value at time index i, e.g. temperature in ∘C or CO2
level in ppm. Consider a point am ∈ time-series and a window around
it of radius n: [am−n, … , am, … , am+n]. am is an important minimum if
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Continuous Signals
Original

Discrete Signals
Original

Smoothed

Important Points

Inc

Dec

Inc

Dec
Inc

Events

Inc

Dec

Inc

Dec
Inc

Dec

Events

Directly identify events

Figure 9.3: Extracting events from continuous and discrete time-series. Con-
tinuous time-series often present noise, therefore, they are first prepro-
cessed with resampling, and smoothed using a lowpass filter. Import-
ant points are found in the preprocessed time-series, and events are
identified from them. Discrete time-series, instead, are not affected by
noise and events can be identified directly.
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and only if

am = min [am−n, … , am+n] ,
ai
am

≥ r ∧
aj
am

≥ r ∀i, j ∶ m − n ≤ i ≤ m ≤ j ≤ m + n, (9.1)

where r ⪈ 1 is a compression factor. The closer is r to 1, the more
important points are found. The precise value of r is a parameter that
must be tuned for the specific experiment. Similarly, am is an important
maximum if and only if

am = max [am−n, … , am+n] ,
am
ai

≥ r ∧ am
aj

≥ r ∀i, j ∶ m − n ≤ i ≤ m ≤ j ≤ m + n. (9.2)

Once important points have been computed, it is possible to extract
events. An event is a transition between two consecutive important
points ak and aℓ. In this paper, we consider the following event types:
increment, decrement and horizontal trend. A transition is labeled as
an increment if and only if

ak is an important minimum
aℓ is an important maximum
w1 ≤ ℓ − k ≤ w2
h1 ≤ aℓ − ak ≤ h2,

(9.3)

where w1,w2 are constraints on the length of the transition and h1, h2
are constraints on the size of the transition. The constraints w1,w2 are
measured in number of samples or, equivalently, in length of time
intervals, when the time-series has a fixed sampling rate. The con-
straints h1, h2 are measured in the same unit of the time-series values,
e.g. ∘C for time-series recording temperature, or ppm for time-series
recording CO2 level. Similarly, a transition is labeled as a decrement if
and only if

ak is an important maximum
aℓ is an important minimum
w1 ≤ ℓ − k ≤ w2
h1 ≤ ak − aℓ ≤ h2.

(9.4)
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A transition is labeled as a horizontal step if and only if

ak, aℓ are important points
w1 ≤ ℓ − k ≤ w2
∣ak − aℓ∣ ≤ h2.

(9.5)

events for discrete time-series

Extracting events fromdiscrete time series is considerably simpler than
from continuous ones. Discrete time-series measure logical quantit-
ies and are not affected by noise, therefore, no filtering is necessary.
Moreover, filtering a discrete time-series would result in a continuous
time-series transitioning smoothly from one state to the other, which
would not significantly approximate the original signal. Therefore,
the filtering step is not performed for discrete time-series.

Since changes of values in discrete time-series represent a logical
change in the measured quantity, the values themselves are important
points, and the changes themselves are events, as shown in Figure 9.3.

9.3.2 episodes involving multiple time-series
Episodes are ordered chains of events pertaining to multiple time-
series, as shown in Figure 9.4. They represent high-level cause-effect
transitions, such as (Occupancy increases, CO2 level increases, Ventil-
ation increases), or (Ventilation increases, CO2 level decreases). Epis-
odes can contain any number of events but they are limited to a certain
window size.

9.3.3 monitoring multiple time-series
Themethod consists of an initial training phase and an online detection
phase (Figure 9.1). During the training phase, historical data are
divided into daily chunks, and episodes are extracted from them and
stored to a database. At the end of this phase, the majority of episodes
in the database will represent usual behaviour of the system. In the
online detection phase, episodes are extracted every day from data
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Figure 9.4: Episodes involving multiple time-series. Episodes are sequences
of events and are represented with green arrows. The first episode
corresponds to a typical threshold-based VAV actuation: when CO2
level increases, the VAV unit opens, which in turns causes CO2 level to
decrease after some time, and thus the VAV unit to close. The second
episode corresponds a more complex dynamics involving the two time-
series.

and compared to the ones in the database. All episodes that are absent
in the database, or have less than a given probability, e.g. 5%, are
flagged as anomalous. Therefore, when the system behaviour matches
the one recorded in the database, it is considered normal, otherwise,
it is considered anomalous.

A small number of anomalous episodes are expected even for healthy
systems, therefore, a weekly moving average of anomalous episodes is
computed. When such moving average exceeds a threshold, i.e. when
anomalous episodes become common for a long period, the system as
a whole is flagged as anomalous.

The method described so far can be used if validated and fault-free
historical data is available. However, for many real-world systems,
this might not be the case. If the system was faulty during the training
period, the database would contain episodes representing faulty be-
haviour, and the method would flag such behaviour as correct during
the online phase. This problem can be solved by exploiting consensus
among several identical or similar systems during the training phase.
Assuming most systems work correctly and only a small part are af-
fected by faults, the majority of episodes stored in the database would,
therefore, represent correct behaviour. Moreover, if faulty systems
were affected by different faults their impact on the whole database
would be even more diluted, as illustrated in Figure 9.2.
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Figure 9.5: Building OU44 at campus Odense, University of Southern Den-
mark.

In order to account for slow-varying seasonal changes in the opera-
tion of the system, episodes obtained during the detection phase could
be added to the database, and older episodes could be removed. In
alternative, multiple databases could be created using historical data
from different periods.

9.4 case study
In this paper we present Odense undervisning 44 (OU44) as a case
study. The building, shown in Figure 9.5, is located at themain campus
of University of Southern Denmark, in Odense. It was built in 2015 and
it is mainly used for teaching and office work. The building contains
around 120 rooms of different types, as shown in Table 9.2, spread
over three floors, and technical rooms located in the basement.

Data from the building are continuously recorded and stored in a
database. Most rooms are equipped with indoor conditions sensors,
such as CO2 level, temperature, humidity and illuminance intensity,
and with other meters such as lights status, heating valves and VAV
units position, occupancy presence, blinds status and booking status.
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Table 9.2: Room types in building OU44.

Room type Count Room type Count

Office 48 Classroom 19
Corridor 21 Study zone 8
Other 7 Stairway 6
Conference room 4 Atrium 4
Copy room 3 Auditorium 2
Kitchen 2

A selected number of rooms have separate plug load meters and oc-
cupancy counting cameras. In total, more than 3500 time-series are
recorded for room-level measurements, and more than 1800 for the
ventilation system.

The building’s ventilation system consists of four identical ventila-
tion units, each of them serving one corner of the building (north-east,
south-east, south-west and north-west). They are designed to main-
tain constant shafts pressures of 130 Pa and 40Pa in the entire unit,
while, at room level, supply flow rates depend on the VAV unit posi-
tion. When VAV units are open, the pressure difference in the supply
and extract shafts induce airflow in the room. The amount of openVAV
units can be used as an estimate of the airflow required to maintain a
constant pressure in the shafts, as was shown in [4]. The airflow, in
turns, is directly related to the energy consumption of the ventilation
unit.

The position of VAVunits themselves is based onmultiple thresholds
on CO2 level: at 600 ppm the VAV unit opens by 45%, at 750 ppm it
opens by 70% and at 900 ppm it opens by 100%. When CO2 level
decreases the thresholds are affected by hysteresis of 100 ppm. The
ventilation system is used to control room air quality, but also to
provide natural cooling using outdoor air. As a result, VAV units
can be open due to temperature, even when CO2 level is low. Heating
is provided by radiations, however, inlet air is heated to a setpoint of
20 ∘C to 22 ∘C inside the ventilation units before entering the supply
shaft.
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9.4.1 monitoring VAV units

The BMS opens and closes VAV units to maintain room air quality,
which is measured by the CO2 level. When the VAV unit is working
correctly, increasing its position results in higher ventilation, which
reduces the CO2 level in the room. It is difficult to accurately estim-
ate the dependency between CO2 level and VAV position. Previous
attempts using regression models, such as the ones used in [117] for
temperature control, lead to unsatisfactory results, perhaps due to
the coarseness of VAV position with respect to CO2 level. However,
episodes involving the two time-series can capture the qualitative re-
lation. Ventilation increasing due to cooling rarely occurs in Denmark,
and only during summer months. Often, this happens when many
occupants are in the room, which results in faster increase due to CO2
level. Therefore, VAV position is dominated by CO2 level, and the
effect of temperature is small.

Rooms in the building were divided into four groups according to
their corresponding ventilation unit. Events were extracted from two
time-series, CO2 level and VAV position ratio. Each group was used to
train and generate a database of episodes. Under the assumption that
rooms sharing the same ventilation unit have similar behaviour, the
episodes are consistent within the group, and the resulting database
contains similar episodes.

On the other hand, each ventilation unit serves different types of
room, such as offices or classrooms. If a room type is underrepresen-
ted in the ventilation unit, the behaviour of such rooms might seem
anomalous with respect to its peers. However, it would not be due to
a fault, but instead to the room’s different shape and usage. To avoid
this possibility of false positives, another experiment was performed
by grouping rooms according to their type, as shown in Table 9.2.

Therefore, the groupings in the two experiments were defined as it
follows.

a) Grouping by ventilation unit: the database was populated with
episodes from all rooms belonging to the same ventilation unit.
All four ventilation units 1 to 4 were considered.
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b) Grouping by room type: the database was populated with epis-
odes from all rooms of the same type. Six room types were
considered: classroom, office, corridor, study zone, auditorium
and conference room.

For both experiments, all parameters were set to the same values.
Two time-series were considered: CO2 level in the room and VAV
position. The database was constructed dynamically, i.e. it was initially
empty, and, every day, it was updated with episodes obtained during
the online detection phase, and infrequent episodes were recorded.
The experiment was performed on data from 20 November 2016 to 27
May 2017. Summer months were excluded, therefore, VAV position
was independent of room temperature. Original datawas resampled to
5min and filteredwith a Butterworth low-pass filter with cutoff period
of 1 h, as outlined in the step ‘Smoothed’ in Figure 9.3. This type filter
was chosen because its monotonously decreasing magnitude, which
is flat in passband, does not distort the original signal [127, 128]. The
moving window size for episode search was set to 2 h, and its step size
was set to 10min The minimal frequency ratio for anomalous episodes
was set to 5%. Events were obtained using the following parameters.
Transitions length constraints (w1 and w2 in Equations (9.3) to (9.5))
were set to 15min and 120min. Transitions size constraints (h1 and h2
in Equations (9.3) to (9.5)) were set to 20 ppm and 30000 ppm.

Table 9.3 shows the most frequent episodes in database for ventila-
tion unit 1. Some episodes represent obvious qualitative behaviour of
the ventilation system. E.g. ventilation is turned on for a while, then it
is turned off, and CO2 level decreases as a result (episode 10).

Figures 9.6 to 9.9 show the weekly moving average of anomalous
episodes for VAV units in rooms served by ventilation units 1 to 4. The
rooms with the largest moving average are plotted separately in the
first plots. Table 9.4 summarizes the results of the two experiments:
the same rooms were found anomalous whether they were grouped
by ventilation unit, or by room type.

Figure 9.6 shows the results for the VAV units in rooms served
by ventilation unit 1. The first two rooms, shown separately in the
upper plots, have significantly more frequent anomalous episodes, i.e.
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Table 9.3: Most frequent episodes in database for ventilation unit 1.

Rank Episode Count

1 Ventilation ↘, CO2 ↘ 257
2 Ventilation ↗, CO2 ↘ 252
3 Ventilation ↘, CO2 ↘, CO2 ↗ 225
4 CO2 ↗, Ventilation ↘ 223
5 CO2 ↗, Ventilation ↘, CO2 ↘ 222
6 Ventilation ↗, CO2 ↗ 219
7 CO2 ↘, Ventilation ↗, CO2 ↗ 210
8 CO2 ↘, Ventilation ↗ 203
9 Ventilation ↗, CO2 ↗, Ventilation ↘, CO2 ↘ 169
10 Ventilation ↗, Ventilation ↘, CO2 ↘ 160

Table 9.4: Rooms flagged as anomalous in both experiments conducted.

Ventilation unit
Unit 1 Unit 2 Unit 3 Unit 4

Room type

Classroom Ø22-601b-0 Ø20-601b-0,
Ø20-601b-2

Ø20-511-1,
Ø20-511-2

Auditorium Ø22-601b-1 Ø22-511-1
Conference room Ø21-606-1
Office
Study area
Corridor
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9.4 Case Study

episodes in these rooms differs more frequently from the episodes
commons to all other rooms. Their moving average goes above 15 or
it is often above 10, while for all other rooms it is consistently lower,
i.e. they behave more similarly among each other.

Figure 9.7 shows the results for the VAV units in rooms served by
ventilation unit 2. The moving average for the first two rooms is very
large, it goes over 15 and it is often over 10. While never reaching 15,
the moving average for the third room is also sometimes larger than
10, while all other rooms have lower values.

Figure 9.8 shows the results for the VAV units in rooms served by
ventilation unit 3. In this case, only one room has moving average
larger than 10, while all the others have lower values.

Figure 9.9 shows the results for the VAV units in rooms served by
ventilation unit 4. The moving average for the first two rooms is very
large, it goes over 15 and it is often over 10. All other rooms have lower
values.

Figure 9.10 shows the results for the VAV units in classrooms. The
five rooms which have the moving average over 10 are also the same
that were found anomalous in the first experiment, when rooms were
grouped by ventilation unit.

Table 9.4 summarizes the results of the two experiments. The same
rooms were found anomalous whether they were grouped by ventila-
tion unit or by room type, i.e. those rooms had a different behaviour
compared to other rooms served by the same ventilation unit, and
compared to other rooms of the same type. The anomalous rooms
are 5 classrooms, two auditoriums and one conference room. Since
the building contains only one auditorium and 4 conference rooms,
the episode database, when grouping by room type, would contain
episodes only for small amount of rooms. Therefore, the sample size
is too small to conclude that the rooms have actually anomalous beha-
viour. Classrooms, however, are numerous in the building, and both
experiments independently flagged the same rooms as anomalous.

Figure 9.11 shows the values of CO2 level and VAV position for
room Ø21-606-1 on a day without anomalous episodes. Ventilation
in the room follows CO2 level as expected. The VAV unit opens by,
respectively, 45 ppm, 70 ppm and 100ppmwhen CO2 level rises above
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Figure 9.6: Moving average of deviations for ventilation unit 1. In the first two plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last two plots.
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Figure 9.7: Moving average of deviations for ventilation unit 2. In the first three plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last plot.
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Figure 9.8: Moving average of deviations for ventilation unit 3. In the first plot, the room which frequently
deviate from the common behaviour is shown separately. The rest of the rooms are shown together in
the second plot.
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Figure 9.9: Moving average of deviations for ventilation unit 4. In the first two plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last two plots.
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Figure 9.10: Moving average of deviations for classrooms. In the first five plots, the rooms which frequently
deviate from the common behaviour are shown separately. The rest of the rooms are shown together in
the last plot.
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Figure 9.11: Correct behaviour of room ventilation. The VAV unit opens at
the expected levels when CO2 level rises over the thresholds.

600 ppm, 750 ppm and 900ppm. The VAV unit closes with some delay
after the CO2 level drops below the thresholds, due to hysteresis of
100 ppm.

Figure 9.12 shows the values of CO2 and VAV position for the same
room on an anomalous day. CO2 level is low during most of the day,
and it only rises few times above the first thresholds of 600 ppm. The
VAV unit, however, always opens completely. High room temperature
could cause ventilation to increase to provide natural cooling through
outdoor air. However, room temperature never exceeds 24 ∘C during
the day.

Finally, the moving average of deviations from common behaviour
has an irregular trend. Some rooms, however, have a higher deviation
at the beginning of the experiment, and, later, align themselvesmore to
the other rooms. E.g. room Ø20-511-2, when clustering by ventilation
unit and room type (Figures 9.9 and 9.10), or room Ø20-601b-2, when
clustering by ventilation unit and room type (Figures 9.7 and 9.10).
This might suggest that, during the first few weeks, the episodes
database was not yet fully populated, and deviations during that
period should be ignored.
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Figure 9.12: Anomalous behaviour of room ventilation. CO2 level is below
the threshold during the day, but the VAV unit is often completely open.
Room temperature is steadily below 24 ∘C during the day, therefore, it
cannot cause ventilation to increase.

9.5 conclusions

In this paper, we presented a data-driven method for anomaly de-
tection for VAV units based on consensus among several peers. A
database of episodes is created from historical data and used to com-
pute the frequency of new episodes. Compared to the majority of
data-driven methods in the literature, the method does not need fault-
free training data, instead, it relies on a large number of identical or
similar systems. The effect of faulty systems during training is di-
luted over the entire dataset and, therefore, has a small impact on the
generated model.

We applied the proposed method to detect anomalous VAV units
of an existing building using CO2 level and VAV position. Each room
in the building contains a VAV unit, and all units are identical. We
designed two experiments to investigate the behaviour of VAV units.
At first, we grouped rooms by ventilation unit. Rooms served by
the same ventilation unit are assumed to have the same behaviour,
however, this assumption might not hold if their shape and usage
are significantly different, and it is possible that they are incorrectly

210



9.5 Conclusions

flagged as anomalous. Therefore, we ruled out this possibility by
running a second experiment where we grouped the rooms by room
type. The two experiments identified the same anomalous rooms,
which suggests that their behaviour was, indeed, anomalous.

Some BMSs provide basic FDD capabilities, most often based on
simple thresholds-based tests. Some faults at room level can be detec-
ted with these tests, e.g. a VAV unit stuck closed will eventually cause
CO2 level to rise above the threshold, however, they are not able to
model complex dynamics. Episodes, on the other hand, can model
interactions between different measurements, such as CO2 level and
VAV units positions, and, by using consensus, the proposed method
can assess whether such interactions are similar to ones observed in
their peers.

Consensus-based FDD methods are rarely applied in building sys-
tems. The proposed method is used to detect anomalies among inter-
action between VAV units and CO2 level in the room. This approach
shows the usefulness of using consensus between multiple similar sys-
tems to remove the need for fault-free historical data. Additional work
would be necessary to decide whether anomalies are due to faults,
misconfiguration or other causes, and, furthermore, to precisely dia-
gnose such faults. The proposed method exposes several parameters,
such as factor r, windows sizes, and thresholds for anomaly detection.
In the experiments they were manually tuned to obtain a reasonable
set of episodes, however, for a systematic application a method for
self-tuning those parameters should be investigated.

The proposed method relies on the availability of many identical
or similar components, and it can also be applied to other systems in
buildings, such as heating, by monitoring episodes between radiators
and room temperature, or lighting, by monitoring episodes between
lights switches and illuminance sensors. More than two time-series
can be used for phenomena that influence each other, such as CO2
level, ventilation, temperature and heating, in order to generate more
complex episodes.

Finally, the method presented in this paper was designed in the
context of a complete framework for FDD and energy performance
monitoring in building systems, aiming at developing a continuous
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monitoring application [8]. In our previous work, we addressed is-
sues at different levels in building systems. Validation of sensors data
through a basic set of rules and tests allows us to trust the status of the
building, which is the basis for every advanced method using build-
ing’s data, and which is not always validated after construction [1]. By
monitoring the whole building energy performance with a dynamic
energy model, we can assess whether the building respects national
regulations and attains its design goals, or if it suffers from unjustified
increased energy consumption, and at which level [2]. When one of
the building systems does not perform as expected, we can analyse its
individual components to detect anomalous behaviour or deviations
from past trends [3, 4]. The method presented in this paper fills an-
other area by isolating anomalous systems among multiple peers and,
therefore, is another step towards a comprehensive FDD and energy
performance monitoring framework for buildings.
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chapter 10evaluating fdd methods and
assessing their impact with

faults simulation
This chapter is a cosmetic adaptation of the following paper, under
review at the journal Sustainable Cities and Society.

Claudio Giovanni Mattera, Hamid Reza Shaker, Muhyiddine Jradi,
Mathis Riber Skydt and Sebastian Skals Engelsgaard. ‘Fault Detection
in Ventilation Units using Dynamic Energy Performance Models’. In:
Sustainable Cities and Society (2019). issn: 2210-6707. Submitted

abstract
Buildings are one of the world’s largest energy consumer. Building
systems are often affected by faults which cause energy waste and
occupants discomfort.

In this paper, we propose a model-based method for fault detection
and diagnostics of ventilation units supported by a set of rules. At first,
a dynamic energy model of the building is used to obtain the expec-
ted energy consumption for each subsystem, and under-performing
subsystems are isolated. Afterwards, a set of rules is used to precisely
diagnose the faulty component.

The method is tested on the EnergyPlus model of an existing build-
ing, where faults are simulated by modifying its parameters. Two
types of faults are considered: abrupt faults, where the parameters
change abruptly, and gradual faults, where parameters change gradu-
ally over time. Different components inside the ventilation unit are
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considered, such as heat exchangers, hot-water heating loops, and
fans.

Most faults are correctly identified by the proposed method, while
others did not result in significant increase in consumption. Moreover,
an assessment of the impact of the considered faults is reported. Faults
caused up to 8% increase in the energy consumption for the ventilation
unit. Finally, detection of gradual faults has promising applications in
faults prediction.

10.1 introduction
Buildings are one of the world’s largest energy consumer. In Europe,
they account for 40% of the total consumed energy and a large part
of CO2 emissions [12]. In the United States of America, they are
responsible for over 41%, more than industry and transportation,
and energy consumption has been steadily increasing, doubling from
1290TWh in 1980 to 2784TWh in 2010 [16]. Thus, buildings are an
important actor with respect to the long-term environmental goals
such as Europe 20 20 [21] and its proposed extensions [22], or doubling
the U. S. A. energy productivity by 2050 [31].

Modern buildings contain several subsystems, such as lighting, heat-
ing, ventilation and air conditioning (HVAC), sensing networks and
booking systems, usually coordinated by a central building manage-
ment system (BMS). Each of these systems can have considerable
complexity and, therefore, are more vulnerable to faults. Faults can
cause reduced occupants comfort, e.g. a broken thermostat would
result in too high or too low temperature in a room, but also increased
energy consumption, e.g. simultaneous heating and cooling. Energy
waste due to faults can be significant. In 2009, 13 of the most common
faults in the U. S. A. were estimated to cause over 3.3 billion $ [36], and
this number was supported by other recent reports [37].

Recently, fault detection and diagnostics (FDD) techniques have
been studied and applied in the context of building systems. Such
techniques have been successfully developed anddeployed for decades
in several fields, such as avionics and process control. FDD aims for
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quick and complete identification of faults present in building systems,
in order to minimize occupants discomfort and energy waste.

In this paper, we propose amodel-basedmethod for FDD in building
HVAC systems, supported by a set of rules. Variations in consumed
energy are monitored to isolate anomalous components, and a set of
rules is further used to validate their operations. We use the dynamic
energy model of a real building to simulate faults and test our method,
and we report the results. We consider faults affecting heaters, heat
exchangers (HXs) and fans.

The work was carried out within project COORDICY, a strategic
Danish-American interdisciplinary research project for advancing
buildings intelligence.

The rest of the paper is organized as it follows. In Section 10.2, a
general review of the current state of the art is presented. The method
and the evaluation methodology are presented in Section 10.3. A
case study is introduced in Section 10.4, and specific experiments are
defined in Section 10.5. Results from the experiments are reported in
Section 10.6. Finally, conclusions are drawn in Section 10.7.

10.2 state of the art
A comprehensive review of FDD methods for building systems was
presented by Kim et al. in 2018 [41]. The authors categorize FDD
methods in three large groups: history-based methods, quantitative
model-based methods and qualitative model-based methods.

In history-based methods, a black box model of the system under
test is created from historical data and used to validate and predict the
behaviour of the system itself. Several techniques can be used for the
model, such as, linear and non-linear regression, principal compon-
ent analysis (PCA), artificial neural network (ANN), support vector
machine (SVM) and statistical methods. Methods in this category
usually consist of two separate phases: an offline training phase, and
an online testing phase.

During the training phase, historical data is fed to the model, so
that its hidden parameters are estimated. This phase usually occurs
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only once, or very rarely, only when the system significantly changes
structure, and can take considerably long time. The result is a model
that predicts or validates the system’s behaviour.

During the testing phase, real-time data from the system is fed as
input to the model, and its outputs are compared with actual measure-
ments from the system. If no faults are present, the model is assumed
to accurately characterize the system. If, on the other hand, the system
is affected by a fault, its behaviour is assumed to be different. There-
fore, faults are detected when the model does not follow the proper
operation of the system.

The typical approach for diagnosing faults is to train multiple mod-
els, using historical data from systems affected by each fault. During
the testing phase, the system’s behaviour is compared with each of
the resulting models, and the matching one corresponds to the spe-
cific fault, or no fault. If no model matches the current behaviour, an
unknown fault might be present.

History-based method do not use any specific information about
the system under test, the model is constructed entirely from data. For
this reason, such methods are easily portable to different systems, as
long as training data is available.

Themain disadvantage of history-basedmethods is the requirement
of fault-free historical data. A model trained with unknown faulty his-
torical data does not represent the correct behaviour, and will wrongly
flag faults as correct operation. This requirement makes it impossible
to deploy history-basedmethods on newly installed systems, for which
historical data has not been collected yet. Moreover, labelled faulty
historical data, necessary to perform fault diagnostics, is very rarely
available.

An example of history-based method can be found in [129]. The
authors present a hybrid method based on PCA and pattern matching
for FDD in air handling units (AHUs). Periods in historical data where
conditions are similar to the current ones in the system are identified
through pattern matching. If the system status is different from the
one in those periods, an alarm is raised. The authors test their method
on experimental data containing six different faults.

In quantitative model-based methods, a model of the system un-
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der test is constructed from first principles and, as in history-based
methods, is used to validate and predict the behaviour of the system
itself. The main difference from history-based methods is the way the
model is constructed. While, in history-based methods, the model
was trained using data, in quantitative model-based methods, it is
manually constructed by field experts using detailed knowledge of
the system. Quantitative models often consists of a set of differential
equations modelling the physical relationships of different quantities
in the system, and include informations about materials, geometry
and specific components.

Quantitative models are usually much more accurate than black box
models. They can also be used to detect and diagnose faults without
requiring labelled faulty historical data, and sometimes they are even
able to detect unknown faults.

Depending on the required accuracy, quantitative models can have
large complexity, and it can take extensive work from several field
experts to build a model. Complexity also affects the runtime of such
models, while history-based methods can validate data in real-time,
for quantitative models, this can take several minutes or even hours.
Moreover, such models are tailored to a specific system, and they are
difficult to adapt to different ones. Finally, sometimes models are
too complex to explicitly provide values for all their parameters, and
historical data is necessary for parameter estimation.

An example of a model-based method can be found in [130]. The
authors present a hierarchical framework for FDD with respect to
contaminants across ventilation systems. The first two layers are used
to detect local changes in contaminants concentration, and to ensure
that such changes have statistical significance. The top layer analyzes
the building’s layout and determines whether changes are due to
actual contaminants or sensors faults, under the assumption that they
would propagate through the building in differentways. The proposed
method is tested on several artificially generated datasets.

In qualitative model-based methods, the behaviour of the system
is encoded as a set of qualitative relationships. The most common
approach is to build a set of rules describing the system’s correct
operation, and use them to validate the current behaviour.
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The main advantage of rule-based methods is their simplicity. Rules
are defined by field experts without requiring historical data or de-
tailed knowledge of the system’s physics. Set of rules are usually
simple enough that can be understood andmanually validated. Moreover,
rules can often be obtaineddirectly from systemdocumentationwithout
any manual intervention.

Set of rules, however, can only represent relatively simple system
dynamics. For complex systems, a long list of narrow, non-overlapping
rules is necessary. A long list of rules, moreover, is difficult to maintain
and to validate. E.g. it becomes likely to add a rulewhich is inconsistent
or contradictory with the rest.

Nevertheless, rule-based systems are effective in representing and
validating high-level, expected behaviour of the system. E.g. a simple
rule stating that empty rooms have no lighting can detect a broken
occupancy sensor. Another example could be a rule stating that tem-
perature must be within setpoints. In case the rule is not satisfied,
a fault in the heating and cooling system is present. In fact, many
commercial BMSs offer rudimentary FDD using simple alarms.

A recent example of rule-based method can be found in [131]. The
authors define a set of rules for detecting simultaneous heating and
cooling in a building. Two decision trees are defined, one for winter
and one for summer, due to different dynamics and behaviours in the
two seasons. The method is tested on a dataset from a real academic
building. Moreover, the authors assess the impact of simultaneous
heating and cooling over a single month in 400MWh, which corres-
ponds to a financial loss of more than 24000 $.

10.2.1 faults simulation

According to Shi et al., modern FDD methods, while providing useful
information about existing faults to building maintenance, often lack
an assessment of such faults’ impact on the overall building energy
performance [132]. The authors propose a methodology for faults im-
pact evaluation based on comparing faulty conditions with a baseline,
obtained from healthy conditions. They identify three challenges:
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identifying symptoms caused by faults, quantifying the severity of
such symptoms, and mapping them to simulation inputs and outputs.
They test their methodology on a model of a real building, simulating
four different faults: low hot-water supply temperature, low AHU
supply fan efficiency, increased infiltration rate due to window leak-
age and stuck closed reheat valve inside a variable air volume (VAV)
terminal.

A study using EnergyPlus to simulate HVAC faults was presented
in [133]. Four faults were considered: clogging of pipes in the plant
loop, fouling of water heating coils, leaking outside air economizer
dampers and zone temperature sensor offset. In the first case, a model
of the system curve in both healthy and faulty conditions is developed.
The authors consider different approaches for faults simulation. En-
ergyPlus supports an internal scripting engine, however, it is complex
and requires reimplementing control logic. Reusable fault model ob-
jects, on the other hand, remove that requirement. Finally, the authors
test their method on a model of a real building, assessing the energy
impact of the four faults.

The custom implementation for faults simulation in EnergyPlus was
presented in details in [134], applied to HVAC systems. The authors
argue that most of the current research focus on impact at component
or subsystem level, and do not assess impact at the whole building
level, and, therefore, propose to use EnergyPlus as a whole building
simulation engine. The authors define three approaches for faults
simulation in EnergyPlus.

– Modifying parameters directly in the model file. This is the
simplest approach, however, only a limited number of parameters
are exposed, and it cannot be used for simulating faults which
result in complex dynamics.

– Using the internal scripting engine. This allows, but also re-
quires, to define complex interactions between the individual
components, and it requires extensive knowledge of the system.

– Using native fault objects. With this approach, users can define
complex dynamics within the system, however, internal interac-
tions are handled by the engine itself. Moreover, faults objects

223



10 Faults Simulation

are often generic and reusable across different buildings. The
main drawback is that only a limited number of fault objects are
available.

The authors consider four faults objects implemented in EnergyPlus:
sensor faults with air economizers, thermostat/humidistat offset, heat-
ing and cooling coil fouling, and dirty air filters. The impact on the
whole building energy consumption of these faults is assessed on the
model of an ideal building.

Other engines has been successfully used for faults simulation. A
model of a room-level ventilation system was developed using Sim-
ulink by Behravan et al., which was used to perform FDD using acyclic
graphs [135]. Modelica simulation software was used to extend the
building information model (BIM) by Andriamamonjy et al., who
also presented a FDD framework for AHUs [57].

10.2.2 contributions

FDD for HVAC systems is a popular research field, however, most
publications focus on components such as chillers, refrigerators and
heating coils, while heat exchangers are often ignored. Moreover,
while faults simulation has been successfully used in literature for as-
sessing impact of faults, the impact is rarely reported at whole building
level.

The main contribution of this paper is, therefore, two-fold. At first,
we present a model-based method for FDD on HVAC systems, suppor-
ted by a set of rules. We use a detailed whole building dynamic energy
model, calibrated using actual data, to isolate under-performing sub-
systems, and a set of rules to verify the correct operation of individual
components. In particular, we consider components such as heat ex-
changers, hot-water heating loops and fans, andwemodify parameters
in the model to simulate different faults. Afterwards, we present an
assessment of the impact of selected faults on the energy consumption
of a real case-study building.
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Figure 10.1: Overview.

10.3 method
In this paper, we propose a hybrid quantitative model-based method
for FDD in ventilation units, supported by a set of rules. The overview,
shown in Figure 10.1, is the following. A simulation of the building
in healthy conditions is performed to obtain the expected energy con-
sumption. Under-performing subsystems are identified by monitoring
the building’s energy distribution tree, as presented in our previous
work [2]. Afterwards, a set of rules is defined to identify specific
faults.

10.3.1 evaluation
In order to test and validate a FDD method, it must be deployed on
a known faulty system. We simulate the operation of a real building
using its dynamic energy model, developed using the EnergyPlus
simulation engine [52].

The models exposes several parameters corresponding to charac-
teristics of many buildings equipment. E.g. operational schedules,
building materials, airflow constraints, components efficiency and op-
erational temperature, CO2 and pressure setpoints. Normally, values
for these parameters are selected to match the real building, either
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manually or using some parameter estimation method. However, they
can also be modified to represent faulty components. E.g. the air infilt-
ration rate can be modified in order to simulate an increased thermal
loss caused by a leak. Airflow constraints can be changed to simulate
oversized or undersized equipment. Components efficiency can be
decreased to simulate wearing and damages.

In this paper, we design a set of experiments to evaluate the presen-
ted FDDmethod. In each experiment, we select a fault andwe simulate
it by modifying the corresponding parameters. The output from the
simulation represent the behaviour of the entire building when af-
fected by the fault, not only the single component. Finally, we apply
the presented method to the resulting data.

10.4 case study: building ou44
In this paper, we introduce building Odense undervisning 44 (OU44)
as case study. The building, located at the Campus Odense of the
University of SouthernDenmark, has been used as living lab for several
studies and experiment. The building is mainly used for teaching
and office work, and it contains about 200 rooms, divided among
classrooms, offices, and other room types, layered in three floors. Four
ventilation units provide air supply to the building, one for each corner
(north-east, north-west, south-east, south-west).

In order to provide an accurate prediction of healthy behaviour
as well as to estimate accurately the impact of different faults, a de-
tailed whole building energy performance model of building OU44 is
used [8]. The dynamic energy model, built in EnergyPlus, was calib-
rated used actual data from the building on the level of the individual
energy supply systems and was found to predict well the building
energy performance with acceptable uncertainty.

A diagram of a ventilation unit is shown in Figure 10.2. Inlet air
enters from the bottom left, goes through a heat exchanger, which
is used for preheating using exhaust air. Preheated air, if still colder
than the desired setpoint, is further heated using a hot-water based
heating loop, and pushed to the main shaft, from which it will reach
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Figure 10.2: Ventilation unit.

individual rooms. On the way out, air exits the rooms through the
extract shaft, goes through the heat exchanger, and it finally leaves the
building. In the model, one fan is used for pushing air through the
unit pipes. In the real building, one additional fan is located on the
exhaust pipe, before air exists the building.

A ventilation unit contains several components, and each of them
can be affected by faults. Few experiments were defined and per-
formed, in order to evaluate the impact of faults on the final energy
consumption, and also to test the FDD method previously defined.

10.5 experiments
In total, five experiments (A, B, C, D and E) were defined in order
to conduct simulation of different faults in a ventilation unit. The
experiments were divided in two groups: one for abrupt faults and
one for gradual faults. In abrupt faults experiments, two simulations
were performed over the same period, one with original parameters
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values, and one with faulty parameters values. In gradual faults ex-
periments, one simulation was performed over the entire period using
original parameters values, and several consecutive simulations were
performed by gradually changing the parameters values.

In abrupt faults experiments, faults in air temperature loop—i.e.
heat exchanger and heater—were simulated. Each experiment was
duplicated in both summer and winter, in order to account for differ-
ence in heating between warm and cold periods. In gradual faults
experiments, on the other hand, faults were simulated in the air sup-
ply systems. Since air supply does not have a strong dependence on
outdoor temperature, only one experiment was performed. Moreover,
gradual faults required a longer simulation period, which span several
months during both winter and summer.

10.5.1 abrupt faults in air temperature loop
The heat exchanger and the heater do not consume a significant amount
of electrical energy, i.e. turning them on or off cannot be observed in
the electricity meters, where they are dwarfed by the fans’ electrical
consumption. Instead, a faulty heat exchanger will result in increased
heating, which could have a quantifiable effect on the heating meter.
A faulty heater might also affect the heating meter, however, it should
mainly affect the supply air temperature.

Two faults were considered in these experiments.

– Reduced efficiency of heat exchanger, experiments A and B.
– Reduced heater effect, experiment C.

Since heating depends strongly on outdoor temperature, every ex-
periment is performed twice, once during winter and once summer.

10.5.2 gradual faults in air supply systems
Fans are responsible for the largest share of electrical consumption in
the ventilation unit.

Two faults were considered in these experiments.
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– Reduced fan efficiency (gradual, due to wearing), experiment D.
– Obstruct ducts (gradual, due to, e.g. filters accumulating dust),

experiment E.

In experiment E, there are two different outcomes.

– The requested airflow is low enough that the fan can achieve
it despite the ducts being obstructed. This situation should be
indistinguishable from reduced efficiency.

– The requested airflow is above the fan capacity (due to obstruc-
tion).

10.5.3 rules
The following rules are defined to detect the faults introduced in the
experiments.

If energy consumed for heating the air is higher than the expected
value, either the post-HX temperature is lower than expected, too, or
the heater is not operating correctly. This behaviour is encoded in
Rule 10.1.

Rule 10.1: Heater energy rule.

if Heater energy > expected then
if Tpost-HX ≥ setpoint then

Heater is faulty
end if

end if

If post-HX temperature is lower than the expected setpoint, the
heat exchanger is not recovering enough heat from extract air. The
heat exchanger efficiency is lower than expected and, therefore, the
component is faulty. This behaviour is encoded in Rule 10.2.

Regardless of action of heat exchanger and heating energy consump-
tion, supply air temperature must be above setpoint. If this constraint
is not satisfied, the heater is not operating correctly. This behaviour is
encoded in Rule 10.3.
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Rule 10.2: Post-HX air temperature rule.

if Tpost-HX < setpoint then
Heat exchanger is faulty

end if

Rule 10.3: Supply air temperature rule.

if Tsupply < setpoint then
Heater is faulty

end if

If fan energy is higher than expected, either the fan is wearing and
its efficiency is decreasing, or ducts are obstructed. If, at the same
time, provided airflow is lower than expected, ducts are obstructed.
This behaviour is encoded in Rule 10.4.

Rule 10.4: Fan energy rule.

if Fan energy < expected then
if Airflow < expected then

Ducts are obstructed
else

Fan is faulty ∨ ducts are obstructed
end if

end if

10.5.4 experiments parameters
experiments a and b

In these experiments, the heat exchanger efficiency is reduced by 20%
and 50% from its proper operation calibrated value, in order to sim-
ulate wearing. In both cases, two separate instances were simulated,
one for warm months and one for cold months. In the former, the
experiment runs from 1 May 2016 to 31 July 2016. In the latter, the
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experiment runs from 1 October 2016 to 31 December 2016. Table 10.1
shows the parameters’ values in the EnergyPlus model.

experiment c

In this experiment, hot-water temperature in the heating loop is re-
duced by 3 ∘C from its proper operation calibrated value, in order
to simulate a reduced heater effect. This experiment was divided in
two instances, one for warm months and one for cold months. In the
former, the experiment runs from 1 May 2016 to 31 July 2016. In the
latter, the experiment runs from 1 October 2016 to 31 December 2016.
Table 10.2 shows the parameters’ values in the EnergyPlus model.

experiment d

In this experiment, fan efficiency is gradually reduced over time from
its proper operation calibrated value, in order to simulate wearing.
The experiment runs from 1 January 2016 to 31 July 2016. A fault is
simulated on 1 March 2016, at which point the fan efficiency decreases
from its initial value of 0.8 by 2.5% everyweek. The relevant parameter
in the EnergyPlus model is Fan Total Efficiency, and its values
are shown in Table 10.3.

experiment e

In this experiment, fan pressure rise is gradually increased over time
from its proper operation calibrated value, in order to simulate ob-
structed ducts due to dust and other material. The experiment runs
from 1 January 2016 to 31 July 2016. A fault is simulated on 1 March
2016, at which point the fan pressure rise increases from its initial
value of 560 kPa by 2.5% every week. The relevant parameter in the
EnergyPlus model is Pressure Rise, and its values are shown in
Table 10.4.
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Table 10.1: Parameters for experiment A and B.

Variable Healthy Faulty (A) Faulty (B)

Sensible Effectiveness at 100% Heating Air Flow 0.86 0.688 0.430
Latent Effectiveness at 100% Heating Air Flow 0.78 0.624 0.390
Sensible Effectiveness at 75% Heating Air Flow 0.91 0.728 0.455
Latent Effectiveness at 75% Heating Air Flow 0.83 0.664 0.415
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Table 10.2: Parameters for experiment C.

Variable Healthy Faulty

Rated Inlet Water Temperature 23 20
Rated Outlet Water Temperature 21.5 18.5

Table 10.3: Values for parameter Fan Total Efficiency in experiment
D. Efficiency decreases by 2.5% every week, i.e. original efficiency is
multiplied by 0.975i, where i is the number of weeks from the fault.
Week numbers are formatted according to ISO8601:2000(E) [136].

Week Multiplier Efficiency

2016-W01 to 2016-W10 1.000 0.800
2016-W11 0.975 0.780
2016-W12 0.951 0.761
2016-W13 0.927 0.741
2016-W14 0.904 0.723
2016-W15 0.881 0.705
2016-W16 0.859 0.687
2016-W17 0.838 0.670
2016-W18 0.817 0.653
2016-W19 0.796 0.637
2016-W20 0.776 0.621
2016-W21 0.757 0.606
2016-W22 0.738 0.590
2016-W23 0.720 0.576
2016-W24 0.702 0.561
2016-W25 0.684 0.547
2016-W26 0.667 0.534
2016-W27 0.650 0.520
2016-W28 0.634 0.507
2016-W29 0.618 0.495
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Table 10.4:Values for parameter Pressure Rise in experiment E. Pressure
rise increases by 2.5% every week, i.e. original efficiency is multiplied
by 1.025i, where i is the number of weeks from the fault. Week numbers
are formatted according to ISO8601:2000(E) [136].

Week Multiplier Pressure Rise [kPa]
2016-W01 to 2016-W10 1.000 560
2016-W11 1.025 574
2016-W12 1.051 588
2016-W13 1.077 603
2016-W14 1.104 618
2016-W15 1.131 634
2016-W16 1.160 649
2016-W17 1.189 666
2016-W18 1.218 682
2016-W19 1.249 699
2016-W20 1.280 717
2016-W21 1.312 735
2016-W22 1.345 753
2016-W23 1.379 772
2016-W24 1.413 791
2016-W25 1.448 811
2016-W26 1.485 831
2016-W27 1.522 852
2016-W28 1.560 873
2016-W29 1.599 895
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10.6 results
In experiments A and B, the efficiency of the heat exchanger were
decreased by 20% and 50%. The effect of heat exchanger is to heat up
inlet air using extract air, in order to reduce the necessary energy from
the heater. During warmmonths, no visible effect was present, neither
in energy consumption, or in temperatures across the ventilation unit.
During cold months, on the other hand, post-HX temperature was
lower, and energy consumption increased.

The weekly energy consumption for heating is shown in Figure 10.3
for the two experiments, together with the one in the healthy case. In
experiment A, the energy consumption increases over time compared
with the healthy one, reaching about 2% higher in the coldest weeks.
In experiment B, on the other hand, the increase is steeper and faster.
The energy consumption is over 4% higher than expected already at
the beginning of the cold season, and it reaches over 8% during the
coldest weeks.

The first chart in Figure 10.4 shows the daily average post-HX tem-
perature for the two experiments against the one in the healthy case.
In the healthy case, temperature is always above setpoint, i.e. the heat
exchanger is able to preheat inlet air.

In both experiments A and B, on the other hand, the post-HX tem-
perature is frequently lower than the setpoint, especially during the
coldest weeks. In experiment A, where the efficiency was reduced by
20%, post-HX temperature can fall 1 ∘C below the setpoint. In experi-
ment B, where the efficiency was reduced by a more drastic 50%, the
temperature consistently falls over 2 ∘C below the setpoint.

In the second chart in Figure 10.4, the point-wise values of post-HX
temperature are shown during one of the coldest weeks in the sim-
ulation period. Post-HX temperature falls below the setpoint at the
beginning of the day, however, it also rises during the day. This is due
to increase in outdoor temperature and indoor temperature, which, in
turns, increases the effect of the heat exchanger.

While the daily average captures the overall trend, the point-wise
plot shows that the temperature falls over 2 ∘C below the setpoint for
long time during the day in experiment A. In experiment B, where the
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Figure 10.3: Results for experiments A and B during cold months. The first
chart shows the weekly heating energy consumption, the second one
shows the ratio compared with the healthy case. A small reduction in
heat exchanger efficiency causes an increase in heating of around 2%
in the coldest periods. A larger reduction, on the other hand, causes
an increase of over 8%.
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Figure 10.4: Post-HX temperature in experiments A and B. In the first chart,
the daily average temperature is visibly lower than the setpoint in
experiment A, and even more in experiment B. In the second chart, the
temperature falls significantly below the setpoint at the beginning of
the day, but often it recovers later.
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efficiency was significantly reduced, the temperature falls over 4 ∘C
below the setpoint. The low spike at the beginning of the week is due
to the heating system being turned off during the weekend.

In experiment C, the inlet and outlet water temperatures in the
hot-water loop were decreased by 3 ∘C. The heater is used to heat up
air when the effect of the heat exchanger is not enough to reach the
setpoint. No significant increase in energy consumption was visible,
neither during warm months, or during cold months.

The charts in Figure 10.5 shows the daily average supply temperat-
ure for the experiment, against the one in the healthy case during cold
months, and the point-wise temperature for one of the coldest weeks.
Besides some irregular behaviour on Monday, there is no visible dif-
ference. Therefore, the decrease in hot-water loop temperature does
not affect the heating system.

In experiment D, the efficiency of the fan in the ventilation unit
was decreased by 2.5% every week, starting on 1 March 2016. In
experiment E, the pressure rise across the fan was similarly increased
by 2.5% every week. Figure 10.6 shows the energy consumed by the
fan in the two experiments against the one in the healthy case. In the
healthy case, the fan energy consumption is roughly constant over
time. In both experiments, on the other hand, the consumed energy
visibly increases over time after the fault happened.

Figure 10.7 shows the efficiency of the fan in the two experiments,
computed as daily airflow divided by daily energy consumption, and
aggregated by week, against the one in the healthy case. Airflows in
experiments D and E coincide and, therefore, it was not possible to
distinguish the case of reduced fan efficiency from the case of duct
obstruction.

10.6.1 impact of faults

In experiments A and B, the heating energy consumption increased
by up to 2% and 8% compared with the one in healthy conditions. In
the coldest weeks, heating energy consumption can reach 2000 kWh.
Additional heating due to decreased heat exchanger efficiency would
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Figure 10.5: Daily average supply temperature in experiment C. The reduced
water loop temperature does not have a visible effect on the air temper-
ature..
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Figure 10.6: Fan energy consumption in experiments D and E. After the fault
happens, energy consumption visibly increases over time..

240



10.6 Results

Jan Feb Mar Apr May Jun

0.25

0.3

0.35

0.4

Date

Effi
ci
en

cy
[m

3 /
(s

kW
h)

]

Healthy
Experiment D
Experiment E

Figure 10.7: Fan efficiency in experiments D and E, computed as daily airflow
divided by daily energy consumption. After the faults happen, fan effi-
ciency decreases constantly over time. The visible decrease in efficiency
right before the fault is an artifact due to weekly aggregation..

be responsible for 40 kWh and 160 kWh. In experiments D and E, at
the end of the simulation, theweekly fan electrical energy consumption
was 464 kWh higher than the one in the healthy conditions.

The energy waste caused by the faults simulated in the experiment
appears to be relatively small. However, this is due to the high en-
ergy efficiency of building OU44. The building is, as a matter of fact,
classified as a 2020 class building, according to the Danish Building
Regulations [29]. This class includes buildings whose annual primary
energy consumption must not exceed 25 kWh/m2, and was defined in
the context of long-term energy savings goals. Therefore, the impact
of faults on energy consumption, while significant in relative terms, is
small in absolute terms for highly efficient buildings.

The vast majority of existing buildings, on the other hand, are sig-
nificantly less energy efficiency compared to building OU44. E.g. in
Europe, over 80% of the buildings were constructed before 1990, and
over 40% date back to 1960 [137], where there was not the same focus
on energy efficiency as there is today, and, therefore, they consume
a considerably higher amount of energy. The same relative impacts,
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therefore, become significant also in absolute terms for many build-
ings.

10.6.2 implications for faults prediction
The method proposed in this paper shows promising implications in
the context of faults prediction. One of the limitations of FDDmethods
is that they can only detect faults after they happen. At that point,
faults might disrupt the building use, and, moreover, maintenance
operations might be delayed, causing prolonged energy waste and
occupants discomfort. FDD methods are, therefore, reactive, since
they react to faults, quickly detecting them and identifying their cause.

Faults prediction methods, on the other hand, are proactive, i.e.
they aim to predict the occurrence of faults before they even manifest,
usually by observing behaviour that are known to lead to malfunc-
tioning. For this reason, they are, in general, less accurate and reliable
than FDD methods. However, the information that a fault is going
to happen in the near future can be extremely useful, e.g. to avoid
service disruption, to schedule maintenance in advance, or to gather
replacement equipment before necessary.

In experiments D and E, a decreasing efficiency was observed. In a
real building, efficiency might be affected by noise, e.g. due to sensor
bias, and seasonal variations. Therefore, the acceptable efficiency
might be lower than the usual one. A slow decrease, such as the one
observed in the experiments, might be detected before it could have a
significant impact on building operations. Maintenance work could
then be scheduled to address the fault, e.g. by replacing a wearing
component, or cleaning the ducts.

10.7 conclusion
In this paper, we proposed a model-based method for FDD on vent-
ilation units, supported by a set of rules. At first, under-performing
components are identified by comparing the energy consumption re-
corded by the energy meters with the expected one. Afterwards, a
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10.7 Conclusion

set of rules is used to precisely diagnose the faulty component. We
defined five experiments, in whichwe used an EnergyPlusmodel of an
existing building, calibrated with real data, to simulate its ventilation
system. In each experiment, we introduced different faults, and we
tested our method on those data. One of the experiments did not
yield any measurable effect on the building, while the others caused a
measurable increase in energy consumption, and were detected and
further diagnosed by the presented method.

Faults were simulated by modifying parameters in the model. This
allowed to assess the impact of the faults, both in terms of occupants
comfort, and in terms of energy waste. Faults were responsible for
significant relative increased energy consumption, up to 8% increase
for heating energy, however, their effect was modest in absolute terms.
The cause was the extremely high energy efficiency of the building
presented as a case study, which belongs to the highest efficiency
class defined in the Danish Building Regulations. Nevertheless, the
results give insights on less efficient buildings, which are much more
common nowadays, where the same relative energy consumption
increase would result in significant absolute amounts.

Finally, the experiments involving gradual faults showed prom-
ising implications with respect to faults prediction. By detecting a
decreasing term in efficiency early on, maintenance operations can
be scheduled before the system reaches problematic conditions. This
would reduce disruption and downtime for building operations.

Further development is still necessary for achieving a complete
and autonomous FDD application. E.g. proper thresholds need to
be defined to automatically determine whether a measurement is too
distant from the expected value. Simulating abrupt faults with gradu-
ally changing parameters can be a way to determine such thresholds.
Other faults can be simulated by changing parameters in the model,
or by providing custom schedules, or by employing more advanced
techniques such as the ones described in [134].

This method was developed in the context of a complete framework
for FDD and energy performancemonitoring for buildings [8]. At first,
a series of test for time-series data [1] are used to validate the sensing
infrastructure, which is fundamental for any building application.
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Once the status of the building can be trusted, the energy distribution
tree is used to identify under-performing subsystems [2]. Finally,
different methods were developed to further investigate individual
subsystems and diagnose the precise faulty component [3, 4, 5].
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Conclusions
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This part concludes the thesis. In Chapter 11, future research dir-
ections are suggested in the context of the thesis. The findings of the
thesis are summarized and elaborated in Chapter 12.
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chapter 11future research
In this chapter, future research directions are discussed. At first, a
brief recap of the individual publications is reported and, afterwards,
a general summary is presented for the whole thesis.

11.1 individual publications
Since the individual publications included in this thesis were laid
out in a planned sequence, many of the suggested directions for fu-
ture research were covered by later publications. Some others were
also investigated by other people at the center working within project
COORDICY. However, several of them are still unexplored.

In order to achieve a more robust validation of sensors data, an ex-
haustive battery of tests should be designed and deployed. Thresholds
and other parameters could be obtained by system documentation,
physical properties, or expert knowledge.

Results from online energy simulator are stored as plain time-series
and must be manually inspected to detect faults. An automated sys-
tem for fault detection and diagnostics (FDD) could be set up and,
moreover, advanced visualization techniques could be used to im-
prove the understanding by non-technical personnel. A dashboard
application has been developedwithin the center to work as an inform-
ation tool [10] and it could be expanded as a decision support tool
for longer-term planning of building maintenance and improvement.
Moreover, the online energy simulator has the potential to be used for
testing control strategies without deploying a new control system on
an actual building [11].
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11 Future Research

Additional virtual sensors can be deployed for other systems and
components in buildings, possibly using techniques for automatically
design such sensors from historical data or from the system’s model.
Moreover, the results obtained in Chapters 7 and 8 raised questions
about temporary anomalous or faulty behaviours. Further methods
should be investigated to decide whether short-lived anomalies are
indeed faults, or whether they are only artefacts due to system inter-
ferences or data quality issues.

The application of a consensus-based method showed the advant-
age of this class of techniques, i.e. that fault-free historical training
data is no longer required. It was successfully used for finding rooms
which exhibited anomalous air distribution patterns, however, more
advanced techniques could be used to detect actual faults. Consensus-
based methods have a potential wherever a system consists of a mul-
titude of similar components, therefore, it could be applied in other
kinds of building equipment such as lighting devices or radiators.

Finally, other techniques are available for simulating different cat-
egories of faults, both with EnergyPlus or with alternative simulation
engines, especially those modelling specific equipment. Moreover,
simulating faults can help in detecting earlier patterns, which can be
used for fault prediction.

11.2 general summary
The obvious future research direction is toward the integration of the
methods developed in this thesis into a self-contained, mature soft-
ware solution. Such solution would implement the main framework
outlined in Chapter 6, allowing pluggable specific methods for special-
ized FDD methods for specific equipment. Standardized interfaces,
both for data access and alarm triggering, would make it possible to
implement advanced methods from the literature. They would also
make it possible to deploy the framework on different buildings.

One of the recurring issues encountered in designing and imple-
menting FDDmethodswas determining sensible values for thresholds.
Due to inaccuracies in modelling and sensing technology, real systems
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11.2 General Summary

always slightly deviate from their expected correct behaviour, regard-
less whether it was obtained from data or quantitative model or if
it was encoded in rules. Thresholds are used to ignore small devi-
ations that are probably not caused by faults, reducing the rate of false
alarms. However, when set too lax, they might also ignore legitimate
faults. These are called type I and type II errors [138]. Effective FDD
methods should avoid overlooking actual faults, however, an excess-
ive rate of false alarms might reduce the trust of the management on
such techniques. Therefore, proper thresholds should be derived by
system documentation, expert knowledge, or even historical data or
simulations. Another alternative could be to use ‘fuzzy’ thresholds,
where faults are reported together with a degree of severity.

Finally, two more research directions stem from FDD: ‘fully auto-
mated’ FDD, and faults prediction. The majority of FDD methods
in the literature, including the ones presented in this thesis, require
manual intervention to work. Input data must be identified and collec-
ted, and a detection pipeline must be explicitly designed and imple-
mented. Alarms are generated manually and changes in the system
often require a new deployment. In fully automated FDD, on the other
hand, the manual intervention is kept at minimal. Building systems
are monitored in real-time, FDD methods are applied continuously,
and faults alarms are forwarded directly to the building management.
Changes in the building’s configuration can be picked up automatic-
ally, at least up to a certain complexity. The online energy simulator,
presented in Chapter 6, which significantly reduces manual operation
for simulating a building’s behaviour, is a step in the direction of fully
automated FDD. The integration of the framework would also factor
out many of the manual operations to the framework itself, and the
efforts for automating it would reflect also on the specialized methods.

In FDD methods, faults are detected after they appear and impact
the system. Faults prediction methods, on the other hand, have a
more ambitious goal of detecting faults before they appear. The main
advantage is to avoid disruption of service due to faults, which can
instead be handled in advance, e.g. when the building is unoccupied
at night or during weekends. FDD, however, is more accurate, due to
having more information from the system.
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chapter 12conclusion
In this chapter, conclusions about the thesis work are drawn.

This thesis presents a hierarchical framework for fault detection and
diagnostics (FDD) on building systems. The framework considers the
following hierarchy in building systems:

– whole building;
– system;
– subsystem;
– component.

The following three major steps are taken to perform FDD: 1. data
validation, 2. isolation of under-performing subsystems, 3. diagnostics
of faulty component.

Data validation is a prerequisite for any building application. There-
fore, as a first step, a system for data validation is designed inChapter 5,
to ensure that the sensing and collection infrastructure is working cor-
rectly. A set of rules and tests is used to confirm that data is collected,
and that physical and logical properties are satisfied.

Once data from the building can be trusted, the status of the building
is monitored regularly to detect unexpected energy waste. A dynamic
energy performance model of the building is used to simulate its ex-
pected behaviour and, specifically, its expected energy consumption
for each system and subsystem. If the measurements from the energy
meters agree with the simulation, the building is considered perform-
ing correctly. Otherwise, one or more subsystems must be responsible
for the discrepancy. Measured and simulated energy consumption are
then recursively compared at lower hierarchy, traversing the building’s
energy distribution tree at system and subsystem level, until all the
under-performing subsystems are identified.
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12 Conclusion

Once the scope is reduced to a single subsystem, specialized FDD
methods can be used for isolating the specific component which is
affected by a fault. Ventilation units are one of the largest energy
consumers in building systems, therefore, faults affecting them cause
major energy waste. For this reason, the rest of the work focuses on
ventilation units, and three specialized FDD methods are presented.

Redundancy is introduced inside a system using virtual sensors, i.e.
by using models to replicate a sensor’s readings using other sensors
as input. Redundant readings are used to isolate faulty sensors, either
physical or virtual. Moreover, virtual sensors can also be used to
obtain values for unmeasured quantities. Linear regression models
are first used to design virtual sensors, and they are later augmented
with non-linear and statistical models.

A severe drawback of data-driven methods is the requirement for
fault-free historical data, which is used to train a model of the system.
Using consensus amongmultiple similar peers this requirement can be
removed, assuming that the contributions of faulty peers are diluted
among the rest. A consensus-based method is proposed to analyse
the patterns in air distribution at room level and to isolate anomalous
rooms.

Finally, a set of rules is used to diagnose specific faults on compon-
ents inside ventilation units, i.e. heat exchangers (HXs), hot-water
heating loop heaters and fans. The behaviour of the system is simu-
lated using a dynamic energymodel of the building, whose parameters
are modified in order to introduce faults. The same results are also
used to assess the impact of faults on the energy consumption of the
building.

The main advantage of the proposed framework is the reduction in
the scope achieved by traversing the energy distribution performance
tree. It is not necessary to continuously run FDD methods on every
single subsystem in the building, instead, only under-performing sub-
systems are investigated. This reduces the computational load com-
pared with continuous, extensive monitoring, and it also reduces the
chance for false alarms, since subsystems that have good perform-
ance cannot generate alarms at all. Moreover, it lays the basis for an
integrated system, where specialized methods can be implemented
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independently of each other.
All the methods presented in this thesis were tested on building

Odense undervisning 44 (OU44), a real building at the University of
Southern Denmark. The building, which is used as a living lab for
different experiments, has a comprehensive sensing infrastructure,
and its data over several years was available for testing. Using a real
building validated the results of the methods and also forced to deal
with limitations in the infrastructure and with implementation details.
The methods presented in this thesis, therefore, are not purely theor-
etical speculation detached from the real world, but they have instead
been concretely deployed and used in practice. Moreover, actual faults
and anomalies were discovered in the building, which improved both
its energy consumption and occupants comfort.

Additional software tools and libraries were developed to aid the
implementation of the presented methods, and their deployment on
the existing infrastructure of building OU44. Libraries for data access
over the simple measurement and actuation profile (sMAP) and other
protocols, and software tools such as building drivers and tools for
automation of building performance simulations have been success-
fully used in other programs within project COORDICY and others
projects at the center, and some of them have been released to the
public.
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