OPTIMIZATION HEURISTICS FOR RESIDENTIAL ENERGY
LOAD MANAGEMENT

CLAUDIO GIOVANNI MATTERA

Computer Engineering Engineering Mathematics
Dipartimento di Elettrotecnica Department of Mathematics
e Informazione
Politecnico di Milano Lunds Universitet
Prof. E. Amaldi Prof. K. Astrom

December 2012

Claudio Giovanni Mattera: Optimization heuristics for residential energy
load management, © December 2012

ABSTRACT

Note: an Italian and a Swedish translations of this abstract are on
page iv and on page v.

The MS thesis is concerned with the problem of scheduling the
daily energy loads in a multihouse environment from the point of
view of an energy retailer.

We assume that the residential users own a set of home appli-
ances (washing machines, dishwashers, ovens, microwave ovens, va-
cuum cleaners, boilers, fridges, water purifiers, irons, TVs, personal
computers and lights) that are supposed to be used during the day.
Houses can also be equipped with Photo Voltaic (rv) panels, which
produce energy in a discontinuous way, and batteries that allow the
system to store and release energy when required. The day is sub-
divided into 96 timeslots of 15 minutes each. For each appliance, we
suppose to know the load profile, that is, a set of successive timeslots
with the corresponding amount of energy required.

Given the load profile of each appliance, the time windows in
which the appliances must be executed, the physical characteristics
of the batteries, the energy amount produced by the pv systems, the
problem is that of scheduling the various appliances (assigning their
starting timeslots) so as to minimize an appropriate objective function
while respecting the maximum capacity of the meters (usually 3 kW).
We consider minimizing the total maximum peak.

This Residential Energy Load Management Problem is a challen-
ging extension of the classical Generalized Assignment Problem (Gar).
Since the Mixed Integer Linear Programming (MiLr) formulation can
be solved within reasonable computing time only for small instances,
we developed various methods to tackle medium-to-large size in-
stances: a Greedy Randomized Adaptive Search Procedure (Grasp) to
generate initial feasible solutions, a meta-heuristic a la Tabu Search
(Ts) to improve initial solutions, and other techniques based on the
solution of reduced MiLP problems. In the Ts algorithm we proposed
different types of moves (appliances shift, batteries charge or dis-
charge...) to explore the neighbourhood.

We have tested our methods on a data set of 180 realistic instances
with different number of houses (20, 200 and 400), pv panels and
batteries. The solutions provided by the heuristics are compared with
those obtained by solving the MILP model by using a state-of-the-art
solver.

For instances without batteries all our heuristics yield high quality
solutions — within 3% from the reference solution — in a short comput-
ing time for the largest instances. Heuristics that solve reduced miLrs
achieved the same results even for instances with batteries.

iii

SOMMARIO

La tesi riguarda il problema di organizzare i carichi di energia gior-
nalieri in un ambiente multi case da punto di vista del grossista di
energia.

Si assume che gli utenti domestici possiedono un set di disposi-
tivi (lavatrici, lavastoviglie, forni, forni a microonde, aspirapolvere,
scaldabagno, frigoriferi, purificatori per acqua, ferri da stiro, TV, com-
puter e luci) che vengono utilizzati durante il giorno. Le case posso-
no anche essere dotate di Pannelli Fotovoltaici (rv), che producono
energia in modo discontinuo, e batterie che permettono al sistema di
immagazzinare energia per rilasciarla quando necessario. Il giorno ¢
suddiviso in 96 timeslot di 15 minuti ciascuno. Per ogni dispositivo
si suppone di conoscere il profilo di carico, i. e., un set di timeslot
successivi con il corrispondente ammontare di energia richiesta.

Dato il profilo di carico di ogni dispositivo, le finestre temporali in
cui i dispositivi devono essere attivati, le caratteristiche fisiche delle
batterie, 'ammontare di energia prodotta dai sistemi fotovoltaici, il
problema & di schedulare le varie attivita (assegnando i timeslot di
inizio) in modo da minimizzare una funzione obiettivo appropriata e
da rispettare la capacita massima (solitamente 3 kW). Si considerera
la minimizzazione del picco massimo totale.

Il problema della gestione del carico domestico & un’impegnati-
va estensione del classico Problema di Assegnamento Generalizza-
to (Gar). Dato che la formulazione di Programmazione Lineare Mi-
sta Intera (MILP) puo essere risolta in tempo ragionevole solamente
per piccole istanze abbiamo sviluppato diversi metodi per affronta-
re istanze medio-grandi: un algoritmo Greedy Randomized Adaptive
Search Procedure (GRASP) per generare soluzioni iniziali ammissibili,
una meta-euristica a la Tabu Search (1s) per migliorare le soluzioni
iniziali, ed altre tecniche basate sulla risoluzione di problemi miLp
ridotti. Abbiamo proposto diversi tipi di mosse (spostamento dei
dispositivi, carica e scarica delle batterie...) per esplorare il vicinato
nell’algoritmo Ts.

Abbiamo testato i nostri metodi su un data set di 180 istanze rea-
listiche con un diverso numero di case (20, 200, 400), pannelli foto-
voltaici e batterie. Le soluzioni fornite dall’euristica sono confrontate
con quelle ottenute risolvendo il modello MILP con un risolutore allo
stato dell’arte.

Per istanze senza batterie tutte le nostre euristiche hanno prodotto
soluzioni di alta qualita — entro il 3% dalle soluzioni di riferimento —
in breve tempo di esecuzione per le istanze pit1 grandi. Le euristiche
che risolvono MiLr ridotti hanno raggiunto gli stessi risultati anche
per istanze con batterie.

iv

SAMMANFATTNING

Examensarbetet handlar med att utveckla algoritmer for automatisk
schemaldggning av energianviandning i ett antal hushall i ett omrade.

Vi antar att husdgarna har ett antal hushallsapparater (tvattma-
skiner, diskmaskiner, ugnar, mikrovagsugnar, dammsugare, kokare,
kylskdp, vattenrenare, strykjarn, TV-apparater, datorer och ljus) som
skall anvdandas under dagen. For flera apparater viljer anvandarna
sjdlv nar de ska anvandas, men vissa ldter man systemet schemaldg-
ga. For dessa finns det ett tidsintervall d& de ska anvidndas. Husen
ocksd ha Solpaneler (rv), som genererar energi, och batterier som
later systemet lagra och anvanda energi ut niar det behovs. Dagen de-
las i 96 tidsluckor om 15 minuter. For varje apparat antar vi att vi vet
motsvarande lastprofil, d. v. s tidsluckor med motsvarande energian-
vandning.

For varje uppsittning av data (hushallsapparaternas lastprofil, tids-
perioder som apparater maste anvandas, batteriers egenskaper, solpa-
nelernas energitillforsel) ar uppgiften att schemalédgga alla apparater
(bestimma deras tidsluckor) for att minimera en lamplig malfunktion
under lampliga bivillkor (vanligen max last mindre dn 3kW). Vi ska
tanka efter minimera aggregat maximum hojdpunkten.

Detta schemaldggningsproblem kan ses som en utvidgning av det
klassiska Tillordningsproblemet (Gap). En tiankbar 16sningsmetod &r
att anvanda en Blandad Heltal Linjar Programmering (MILP) l0sare.
Denna kan dock bara 16sas i rimlig tid for sma probleminstanser.
Darfor valde vi att anvianda olika metoder for att 16sa optimerings-
problemet: Greedy Randomized Adaptive Search Procedure (GRASP)
for att skapa forsta gorliga losningar, tabu-sokningsalgoritmen (Ts)
for att forbdttra 16sningar, och andra metoder som 16ser mindre mILP
problem. I tabu-sokningsalgoritmen foreslog vi flera dragtyper (ap-
paraters flyttning, batteriers laddning och lossning...) for att utforska
den omgivningen.

Vi testade vara metoder péd 180 riktiga instanser med olika hus (20,
200 och 400), solpaneler och batterier. Vi jamforde 16sningarna som
gavs av de heuristik med de som gavs av den exakta MILP losaren.

Véra heuristik gav hogkvalitet 16sningar for ej-batterier instanser —
inom 3% frdn referens losningar — i lite tid for de storsta instanser.
De dér heuristik som anvander mindre MILP problem uppnddde den
samma kvaliteten dven nar det fanns batterier.

CONTENTS

1 INTRODUCTION 1
1.1 Energy demand curve 2
1.1.1 Smooth demand curve 2

1.2 Smart grids 3
1.3 Energy Box 4
1.4 Dynamic pricing 5
1.4.1 The day ahead market 5
1.5 This thesis 6

1.5.1 Structure 6
2 RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM
2.1 Residential appliances scheduling 8

2.1.1 An overview 8
Photo Voltaic panels 10
Selling energy to the network 10
Batteries 10

2.1.2 Objectives 11
Minimization of total cost 11
Minimization of global maximal peak 11
Tracking a given demand curve 11

2.1.3 Definition 11

2.1.4 An example 12

Multiple houses 15
Realistic example 15

2.2 Related and previous work 16
2.3 Generalized Assignment Problem 19
3 MIXED INTEGER LINEAR PROGRAMMING MODEL 20

3.1 Model 20
3.1.1 Sets 20

3.1.2 Parameters 21
3.1.3 Variables 22
3.1.4 Constraints 23

3.1.5 Objective functions 25
3.2 Compact MiLr model 25
3.2.1 Constraints 26
3.2.2 Improvements 26
3.3 Final model 27
4 GENERATING AN INITIAL FEASIBLE SOLUTION 28
4.1 GRASP algorithm 28
4.2 GRAsP for the Residential Energy Load Management
Problem 29
4.2.1 Algorithm 29
4.2.2 Structure of a solution 29

vi

43

Contents

Energy profile 30

4.2.3 Updating the energy profile 30
Adding a load 31
Removing a load 31
Batteries as loads 32

4.2.4 GRASP in detail 33
Using batteries 33

Objective functions 35

4.3.1 Ideal demand curve 36
Maximal difference from ideal 36
p-norm of difference from ideal 36
Ideal curve in GRASP 40

4.3.2 Implemented functions 40
Maximal aggregate peak 40
Maximal difference 40
Maximal difference and p-norm 42
Maximal difference plus p-norm 42
Maximal peak plus maximal difference plus p-

norm 42
4.3.3 Infeasible solutions 42

4.4 Partial Linear Relaxation with reduced miLp 42

5 TABU SEARCH HEURISTICS AND IMPROVING A SOLUTION

5.1
5.2

53

Tabu Search 45

Tabu Search for the Residential Energy Load Manage-
ment Problem 46

5.2.1 Shift move 47

5.2.2 Swap move 47

5.2.3 Battery move 47

Example 48
5.2.4 MILP move 51
5.2.5 MILP-batteries move 51
5.2.6 MILP-zeroes-fixing move 51

5.2.7 Large move 53

5.2.8 Mixed move 53
Tabu Search control 54

5.2.9 Tabu Moves 56

5.2.10 Exceeding maximal local peak 56
Infeasible exploration 58

5.2.11 Early stopping and diversification 59

Local branching 59

5.3.1 Local branching for the Residential Energy Load
Management Problem 60
Refining 61

6 COMPUTATIONAL RESULTS 63

6.1

Objective functions 66
6.1.1 p-norms 66

44

vii

Contents

6.2 GRASP 70

6.2.1 Filtering criteria 70
6.2.2 Infeasible generation 72
6.2.3 Batteries usage in GRASP 73

6.3 Tabu Search 74
6.3.1 Tabu Search with shift moves 74
6.3.2 Tabu Search with MILP moves 76
6.3.3 Tabu Search with mixed moves 76
6.3.4 Tabu Search with mILP-zeroes-fixing move and
mixed moves 77
6.3.5 Tabu Moves 78
6.3.6 Early stop and diversification =~ 78
6.3.7 Infeasible exploration 80
6.4 Partial Linear Relaxation and reduced miLpr 8o
6.5 Local branching 82
6.6 Comparison 84
6.7 Multi-threading 87
7 CONCLUDING REMARKS 88
7.1 Future work 89
A IMPLEMENTATION 91
A.1 Data structures for efficient neighbourhood explora-

tion 92
A.1.1 Incomplete energy profile 92

Incomplete energy profile in other algorithms 96
A.1.2 Move semantic 96

A.2 Local search framework 96
A.2.1 The algorithm 97
Early stop and diversification 97
A.2.2 Template policies 101
Why template parameters? 101
Policies 102
A.3 Multi-threading 102
Bibliography 104

viii

LIST OF FIGURES

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7
Figure 6.1
Figure 6.2

Figure 6.3
Figure 6.4

Figure 6.5
Figure 6.6

Figure 6.7

Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12

Daily domestic energy demand 2
Example: activities load profiles 13
Example: initial demand curve 13

Example: demand curves for different starting
time slot of D 14

Example: optimal demand curve 14

Example: multiple houses 15

Solutions demand curves (without batteries) 16
Solutions demand curves (with batteries) 16

Same maximal peak for different solutions 35
Same maximal difference for different solutions 37

Maximal difference for exponential ideal curve 37
Solutions with same maximal peak and differ-
ence from ideal 39

Solutions with diverse area of difference 39
Solutions with same area of difference 39

p-norms for various values of p 41

Battery move example 52

Mixed move flow chart without batteries 54

Mixed move flow chart with Battery moves 55
Mixed move flow chart with MILP-batteries moves 55

Mixed move flow chart with MILP-zeroes-fixing
moves 55

Swapping two activities 57

Local branching iteration state chart 62

Box plot notation 65

Grasr with different objective functions, 200
houses 67

p-norms 68

GRASP filtering criteria, 200 houses without bat-
teries 71

Feasible and infeasible GrAsP 72

Ts with shift moves, 400 houses without batter-

ies 75

Ts with MILP-Zeroes-fixing move and mixed moves,
typical local search progress 77

Tabu List usage 79

Infeasible exploration in Ts, details 81
Comparison, gap from optimum 85
Comparison, computing time 86

Computing times when using multi-threading 87

ix

Figure A.1 Local search framework’s class diagram 98
Figure A.2 Concrete iteration types 101

LIST OF TABLES

Table 2.1 Oven’s load profile 9

Table 2.2 Example: activities load profiles 12

Table 5.1 Move switch in case of empty neighbourhood 53
Table 6.1 Data set 64

Table 6.2 Reference solutions 65

Table 6.3 Objective functions ids 69

Table 6.4 GRASP filtering criteria 70

Table 6.5 Feasible and infeasible GrAsP 72

Table 6.6 Batteries usage in GRASP 73

Table 6.7 Ts with shift moves 75

Table 6.8 TS with MILP moves 76

Table 6.9 Ts with mixed moves 76

Table 6.10 Ts with MILP-zeroes-fixing move and mixed moves
Table 6.11 Early stop and diversification in Ts 78

Table 6.12 Infeasible exploration in Ts 80

Table 6.13 PLR and reduced mILP 82

Table 6.14 PLR and reduced MILP, instances solved 82
Table 6.15 Local branching 83

LIST OF ALGORITHMS

Algorithm 4.1 GRrAsP 34

Algorithm 5.1 Battery move, outer loops 49

Algorithm 5.2 Battery move, inner loops 50

Algorithm A.1 Neighbourhood’s exploration, first version 93

Algorithm A.2 Neighbourhood’s exploration, second version 93

Algorithm A.3 Neighbourhood’s exploration, third version 94

Algorithm A.4 Neighbourhood’s exploration, fourth and final
version 95

Algorithm A.5 Complete local search 99

Algorithm A.6 Local search early stopping criterion 100

ACRONYMS

GrAsP Greedy Randomized Adaptive Search Procedure
Ts Tabu Search

™™™ Tabu Move

TL Tabu List

MILP Mixed Integer Linear Programming
LP Linear Programming

PLR Partial Linear Relaxation

GAP Generalized Assignment Problem
rv Photo Voltaic

rop Plain Old Data

cru Central Processing Unit

RTP Real Time Pricing

rTA Peak To Average

IBR Inclining Block Rates

FIFO First-In First-Out

EB Energy Box

rosix Portable Operating System Interface

RELMP Residential Energy Load Management Problem

NOMENCLATURE

AcTIVITY A pair appliance, house, i. e. an electric device belonging
to a particular house.

APPLIANCE Any kind of domestic electric device, e. g. an oven, a
fridge, lightings or a boiler.

ExecuTtioN wiINDOW The interval in which an activity can be sched-
uled. Lowly flexible activities, e. g., the fridge or the heating
system, have short execution windows. Highly flexible activit-
ies have insteas long execution windows.

LoaDp PROFILE The energy consumed by an appliance for each time
slots since it is turned on.

PHASE A phase is a time interval of the same size of a time slot.
Activities load profiles give the amount of energy consumed
in each phase.

el

List of Algorithms xii

SMOOTH DEMAND CURVE A smooth demand curve is a curve with
low height, no isolated peaks, little variation from one peak to
the nearby ones. This means that the energy consumption
is very steady over time. It has no relation with the usual
meaning in mathematics, i. e., a function belonging to C*.

TeEMPLATE Templates are a feature of the C++ programming lan-
guage that allow functions and classes to operate with generic
types. This allows a function or class to work on many differ-
ent data types without being rewritten for each one.

TiME sLoT A day is discretized in a finite number of time slots.

INTRODUCTION

In this chapter we introduce the background of the thesis. We men-
tion the ongoing changes in the residential electric energy network,
the importance of the demand curve in the contest of energy effi-
ciency, the future opportunities available with the development of
smart grids and dynamic pricing policies. Finally we state the object-
ive of the thesis and its contribution to the field.

CONTENTS
1.1 Energy demand curve 2
1.1.1 Smooth demand curve 2
1.2 Smart grids 3

1.3 Energy Box 4
1.4 Dynamic pricing 5

1.4.1 The day ahead market 5
1.5 This thesis 6

1.5.1 Structure 6

Historically, electric networks had a top-down structure: the power
plant produced energy, users signed a contract with the electrical com-
pany that specified only the maximal peak consumption, and they
used energy without any kind of interaction with the network. En-
ergy price was fixed and users had no reason to plan their energy us-
age, they just turned on their electrical devices whenever they needed
them®.

Since the electrical company had no way to control energy usage,
there could happen that all users requested the maximal energy al-
lowed by their contract, thus power plants needed to be constantly
able to produce enough energy for this event — and the network itself
needed to be able to sustain such energy flow. Residential energy us-
age has usually a periodic behaviour: people use little or no energy at
night, and during the day they usually perform the same tasks (cook-
ing, cleaning. ..) at roughly the same time. In Figure 1.1 we show the
typical demand distribution during the day®>. We can see that there
are peaks in energy consumption, for instance at eight in the morning
most people use water boilers or microwave ovens to make breakfast,
or at lunch time they use ovens. During other hours not much energy
is used: peak usage is isolated, most of the time only a small fraction

[=

Dual rate tariffs had actually effect in making users aware of different energy prices.
However, it is a very coarse grained tariff, as there are only two prices, one for each
halve of the day. Moreover it is a static tariff, it does not reflect the actual state of the
network and the cost of energy.

2 Source: http://www.mpoweruk.com/electricity demand.htm

Isolated peaks in
daily domestic
energy usage

http://www.mpoweruk.com/electricity_demand.htm

1.1 ENERGY DEMAND CURVE

Figure 1.1: Daily domestic energy demand

Demand [kW)

0 4 & 12 16 20 24
Time of Day

of this energy is requested. This also means that most of the time only
a small fraction of the electrical network is used, which is therefore
oversized.

1.1 ENERGY DEMAND CURVE

An electrical device requires energy in a continuous way, for this
reason instead of the total energy consumption it is usually stated the
power consumption, i. e. the amount of energy consumed per unit of
time. A 1000 W device actually consumes 1000] if it runs for 1s, but
if it runs for 1h it will consumes 3.6 MJ. If the power consumption is
represented with respect to the time — or, equivalently, if the energy
usage is discretized and the energy consumption is represented with
respect to the time slices — the resulting graph is called the energy
demand curve. We showed an example in Figure 1.1 (discretized for
2 min time slices).

The area below the graph between two points is the integral of
the power — or the summation of energy slices — and it is the energy
consumed between those two points. Thus, a peak is a time interval
where much energy is consumed, and conversely a valley is a time
interval where little energy is consumed. A 1000 W peak lasting 1s
consumes the very same amount of energy of a long 1W valley last-
ing 1000s: the energy demand curve does not represent how much
energy is consumed, but how and when it is consumed.

1.1.1 Smooth demand curve

Smoothing3 the energy demand curve has various beneficial effects.
As said before, the electrical network must be sized such as to sus-

Smooth is to be intended in the practical sense of flat, reqular, without isolated peaks,
not in the usual sense of infinitely continuously differentiable, i. e., belonging to C*.

2

1.2 SMART GRIDS

tain the maximal energy request. Oversized facilities are expensive
to build and to maintain, and they often have to be in standby — con-
suming energy. A smooth demand curve means that the facilities are
used in large fraction, and all the energy used to sustain the network
is actually needed and used by the users.

Smoothing the energy demand allows to increase the number of
users or the energy they can use without increasing the size of the ex-
isting facilities. This can be particularly important in highly densely
populated areas like large cities, where it might just be impossible
to deploy additional power plants, and also in developing countries,
where most of the people is now starting having access to many mod-
ern energy hungry devices [Livengood and Larson, 2009, Black and
Larson, 2007].

Besides helping in reducing facilities sizes, a smooth demand curve
does even help in reducing carbon dioxide and other harmful emis-
sions, as discussed in Mohsenian-Rad and Leon-Garcia [2010], Liven-
good and Larson [2009]. Environment friendly power plants — solar,
wind and to some extent hydroelectric and ocean wave plants — handle
well enough a low steady energy request, but they are not suited for
short extremely high peaks. For such peaks environment unfriendly
power plants — using fossil fuels — are needed.

1.2 SMART GRIDS

Lately the energy network — or grid — has been undergoing through
some important changes: from a centralized top-down network, where
there was one entity producing energy and many entities consuming
it, it is becoming a decentralized grid, where, aside the larger power
plants, there are many small energy producers, like Pv panels or wind
power plants. Potentially every single house, once only allowed to
buy and consume energy, could produce and sell unused energy to
the grid.

Although in some areas is already possible to sell exceeding energy
to the grid, it should be noted that there is a transition in act. Most
of the smart grid features are still unavailable at this moment, as
the structure of the electric grid is still for the most part the old one
we mentioned at the beginning of this chapter. However this is the
direction toward which the grid is heading in the long run.

Perhaps the most important aspect of smart grids — the one that
actually gives the name smart — is that, besides energy flow, there is
also an information flow across the grid. The different entities in the
grid can communicate with each other and modify their actions on
the grid accordingly. For instance, if during a peak hour the main
power plant reaches its production limit, it can asks the other entities
to slightly reduce their energy consumption. Conversely, during an
extremely sunny day few houses equipped with pv panels may pro-

Smooth demand
curves are
environmental

friendly

Information flows
across smart grids

1.3 ENERGY Box

duce more energy than the houses themselves need, so they sell the
energy back to the grid and the main power plant can decrease its
production.

1.3 ENERGY Box

An Energy Box (EB) is an appliance that controls the electrical devices
of a house, or a group of houses, proposed by Livengood and Larson

[2009]:

The Energy Box is proposed as a 24/7 background pro-
cessor operating on a local computer or in a remote loc-
ation, silently managing one’s home or small business
electrical energy usage hour-by-hour and even minute-by-
minute.

Different levels of control may be implemented, but in principle the
EB functions are:

* Detecting the power consumption of each device;

¢ Detecting the power production of pv panels or wind power
plants;

¢ Knowing the energy requested by each device at each phase of
its functioning;

¢ Detecting grid’s changes of state, e. g. an energy shortage or an
energy abundance, and changes of energy’s price;

* Asking the user to specify an execution window for each device;
¢ Switching on and off devices according to some scheduling.

The £B would take care of actually deciding when to switching a
device on, according to the execution window specified by the user.
The user sets the soonest and latest times the device should start and
the soonest and latest times it should finish. The EB is free to switch
the device on at any time, as long as it respects these constraints.
Another approach is to define a preferred time and a maximal slack:
whenever a device is started before or later than its preferred time the
user’s comfort decreases, and the EB would need to maximize user’s
comfort.

The EB lifts the users of the burden of explicitly manage the usage
of every electrical device. Even if the network could communicate
to the houses, users should be ready to respond to changes of the
state of the network, and turn on or off their device. With the B they
only have to set some preferences, and the devices are automatically
managed without the need for interaction.

1.4 DYNAMIC PRICING

1.4 DYNAMIC PRICING

As said before, in the traditional electrical network the energy’s price
is fixed. Users are not interested in how they use energy, any way they
do it they always pay the same, so they do it in the most convenient
way. Introducing a dynamic pricing would make the users aware of
different ways to use energy: the simplest way — which is actually
used by some energy providers, e. g., the dual rate tariff is quite
popular in Italy - is to differentiate the price in peak hours and non-
peak hours. This way the users are induced to use some of their
devices when energy is less expensive. Of course some activities need
to be done at fixed time, so users will likely continue to use the cooker
at launch and dinner time, but some other will be shifted, for instance
users may decide to do the laundry at late evening.

The main purpose for dynamic pricing is to smooth the energy de-
mand curve (Figure 1.1) by shaving the peaks and filling the valleys.

1.4.1 The day ahead market

In the day ahead market policy the focus is on a group of houses.
There are three main entities:

HOUSE OWNERS The users who consume energy with their electrical
devices;

ENERGY PRODUCER The main entity who produces the energy in
the grid (a power plant company);

ENERGY RETAILER An intermediate entity who buys energy from
the producer and sells it to the single houses.

The retailer actually buys energy quotes a day ahead, i. e., it makes
a promise to the producer that the day after it will request a given
amount of energy, which it forecast it will be consumed by the users.
The energy producer already knows how much energy will be selling
to the retailer, it already knows how much energy it will have to pro-
duce. It no longer has to keep the power plants and the network in
the condition of producing and dispatching the maximal amount of
energy, so it might switch on only few plants or deactivate some en-
ergy routes. The producer is able to save money knowing in advance
how much energy to produce, and this reflects on the energy’s price:
energy bought a day ahead is cheaper.

If for some reason the retailer did not produce a correct estimate of
energy consumption, it is not able to keep its promises to the energy
producer: it has to buy either more or less energy than previously
stated. The energy producer allows this, but varying the amount of
bought energy in the same day energy market is much more expens-
ive than doing so in the day ahead market.

Dynamic pricing
raises users
awareness

Energy quotes are
bought a day ahead,
based on energy
demand forecast

1.5 THIS THESIS

With the traditional electrical network such pricing policy would
not be very effective, as there would be no easy way to predict how
users will use energy the day aftert. Smart grids and EBs on the other
hand make possible to exploit this pricing policy: the users are asked
to specify the execution window for each device for the day after, the
centralized EB collects all data and output the predicted energy usage.

1.5 THIS THESIS

The Residential Energy Load Management Problem, i. e., finding the
electrical devices scheduling that optimizes the shape of the demand
curve, is very interesting and important with regard to the efficiency
in domestic energy usage, and it has recently been the topic of many
researches, as covered in Section 2.2 on page 16. As explained in
Chapter 3, an existing Mixed Integer Linear Programming (MILP)
model can be used to compute a solution which optimize a given
objective function of the demand curve. Solving such model requires
however extremely high computational effort, and for large instances
it might even be impossible. The purpose of this thesis is to analyse
and exploit the structure of the problem in order to develop an heur-
istic that is able to produce good solutions, e. g., solutions whose
demand curve has low maximal peaks, in a reasonable time. The
heuristic will be based on the aforementioned model, thus it will be
possible to compare the results obtained through the two approaches.

As we shall see, most of the related researches focus on minim-
izing the total cost in a fully dynamic pricing policy scenario. A
flat demand curve — which is the actual objective — is achieved as a
side effect, since prices rise during peak hours and fall during valley
hours. We will instead focus directly on flattening the demand curve,
ignoring the energy price, and instead assuming a day ahead market
scenario. Since energy is cheaper when bought on the day ahead and
a flat demand curve means lower energy production cost, this might
result in money saving as well.

As we observe in Section 2.3 on page 19, the problem can be mod-
elled as an extension of the Generalized Assignment Problem (Gap),
which is used to model a large number of phenomenons. Therefore
it might be possible to adapt the resulting heuristic to problems with
similar structures.

1.5.1 Structure

In Chapter 2 on page 8 we describe in detail the Residential Energy
Load Management Problem. First we make an overview, then we give

Existing forecasting algorithms rely only on statistics over historical data. They ig-
nore users preferences, and are ineffective when those are different from the expec-
ted.

1.5 THIS THESIS

a more formal definition, and lastly we make a complete example.
Then we make a brief survey of previous and related work, and we
mention the relation with the Generalized Assignment Problem.

In Chapter 3 on page 20 we introduce and describe in detail an
extension of the Mixed Integer Linear Programming (MiLr) model
for the Residential Energy Load Management Problem proposed in
Barbato et al. [2011a,b]. We also mention improvements to the model
and computational issues for large instances.

In Chapter 4 on page 28 we describe a Greedy Randomized Ad-
aptive Search Procedure (GRASP) to generate an initial feasible solu-
tion for the Residential Energy Load Management Problem problem.
We define the structure of a solution and the procedures to update
it when scheduling activities. We mention some issues in distinguish
good solutions from bad solutions and we propose few objective func-
tions to address these issues. We also describe an alternative method
to generate an initial feasible solution through Partial Linear Relaxa-
tion (PLR).

In Chapter 5 on page 44 we describe a Tabu Search (1s) algorithm
for the Residential Energy Load Management Problem. Initially we
describe the characteristics of the Ts meta-heuristic, then we explain
in detail what kind of moves we implemented to explore the neigh-
bourhood, how we control the algorithm to switch moves at runtime,
how we enabled exploration of infeasible region and diversification.
We also mention local branching algorithm as an alternative to Ts to
iteratively explore the solution space.

In Chapter 6 on page 63 we report and discuss the results obtained
with the methods we developed. At first we describe the data set
and show the reference results, then we report results for different
kind of objective functions. We report results obtained with Grasp
using different filtering criteria, enabling infeasible generation and
enabling battery usage. We report results obtained with s, for few
variants and parameters: using shift moves, mixed moves, solving
a reduced MILP, enabling diversification and infeasible exploration.
We report results obtained with PLR with reduced miLp and local
branching methods. In the end we compare the different methods
and remark their advantages and disadvantages.

In Chapter 7 on page 88 we summarize the main contributions of
the thesis and we mention a few directions for future work.

In Appendix A on page 91 we give a brief overview about the im-
plementation and we discuss in detail some important or interesting
aspects, such as: what data structures we used to efficiently explore
the neighbourhood; how we implemented an extensible framework
for local search methods.

RESIDENTIAL ENERGY LOAD MANAGEMENT
PROBLEM

In this chapter we describe in detail the Residential Energy Load Man-
agement Problem. First we make an overview, then we give a more
formal definition, and lastly we make a complete example. Then we
make a brief survey of previous and related work, and we mention
the relation with the Generalized Assignment Problem.

CONTENTS
2.1 Residential appliances scheduling 8
2.1.1 An overview 8
Photo Voltaic panels 10
Selling energy to the network 10
Batteries 10
2.1.2 Objectives 11
Minimization of total cost 11
Minimization of global maximal peak 11
Tracking a given demand curve 11
2.1.3 Definition 11
2.1.4 Anexample 12
Multiple houses 15
Realistic example 15
2.2 Related and previous work 16
2.3 Generalized Assignment Problem 19

2.1 RESIDENTIAL APPLIANCES SCHEDULING

The problem we deal with in this thesis is to find a daily schedule for
electrical devices used in a set of cooperating houses so as to optimize
a given objective function that is of interest for the energy retailer or
the users. A MiLr model for the problem is described in Chapter 3 on
page 20.

If the energy demand curve is known a day ahead it is possible to
effectively exploit the day ahead market without having to continu-
ously adjust the energy consumption.

2.1.1 An overview

Electric devices in a house are called appliances. The day is divided
in small time chunks, called time slots, and each appliance has a fixed
duration measured in time slots.

Users specify a desired execution window for each appliance, i. e.

Day is discretized in
time slots

Appliances must
start in a user
specified window

2.1 RESIDENTIAL APPLIANCES SCHEDULING

Time slot 1 2 3 4 5 6 7 8 9

Energy 800 8oo 800 800 8oo 8oo o o 800

Table 2.1: Oven’s load profile

the interval when the appliance can run. More precisely, for each
appliance there is a minimal starting time — before that it cannot start
- and a maximal ending time — by then is has to finish. Usually there
is some flexibility, users can specify a more or less broad execution
window. For instance if user comes home at 17:00 and wants to end
dinner not later than 20:30 then the oven may be scheduled on any
time after 17:15 and has to finish by 19:45.

We limit ourselves to the case where each appliance is executed
exactly once during the day, no re-use nor skip is taken into consid-
eration. Actually this is not a limitation since both two cases can be
reduced to single execution appliances:

e if an appliance should run twice or more — the user might want
to use the electric burner at breakfast, launch and dinner - it
is enough to introduce two or more identical appliances with
non-overlapping execution windows;

¢ if an appliance should not run during a day — the oven is typic-
ally used more seldom than every single day - it is enough to
set its length to zero.

The execution of an appliance is divided into phases, and in each
phase electric energy is consumed. A phase is a time interval of the
same length of a time slot, and the set of all phases along with the
energy consumed is called load profile. For instance the oven might
consume 800 W during the first 30 minutes it is on, then it reaches
the desired temperature and it stops using energy; but then the heat
dissipates and it consumes again energy after 10 minutes for other
5 minutes. With 5 minutes long time slots the oven would have a 9
phases load profile, shown in Table 2.1.

When the execution of different appliances overlaps the total en-
ergy consumption for the house is of course the sum of the single
appliances energy consumptions: using the microwave oven while
watching TV requires more energy than doing only one thing at time.
It is not possible to use arbitrarily as many appliances as possible
however, the contract with the local energy retailer always sets a limit
for residential usage, usually imposing a fixed limit on the absorbed
power. Though it is sometime possible to exceed this limit we assume
that the limit is strictly enforced.

It is possible to try to smooth the house’s energy demand curve by
shifting appliances, filling one’s valleys with another’s peaks. Unfor-
tunately, as pointed out in Barbato et al. [2011b], a single house does

9

Appliances consume
amounts of energy
at each time slot
after they start

A single house can
only gain modest
improvements

2.1 RESIDENTIAL APPLIANCES SCHEDULING

not usually have enough flexibility in its scheduling to achieve sens-
ible improvements. When users collaborate, however, one’s peaks can
be routed to another’s valleys: while energy curves of single houses
may still be non-smooth, by combining them it is possible to make the
aggregate curve sensibly smooth. A pair house, appliance is called
activity.

Photo Voltaic panels

Some houses may have Photo Voltaic (rv) panels that supply energy
in a non predictable way during the day. Though in the model the
source is called rv panels, it could also be wind power, or a mixture
of different sources.

Obtaining reliable forecasting for pv panels energy production is an
open problem [Picault et al., 2010], but in this thesis we assume that
the energy production is known the day ahead. This energy can then
be used for appliances instead of buying energy from the network.

Selling energy to the network

Whenever in a time slot pv panels produces more energy than it is
required from the appliances the exceeding energy is sold to the net-
work. Sometimes the contract between the energy retailer and the
users sets an upper limit on the amount of energy that is sold in a
time slot, as for bought energy.

Batteries

Some houses may have batteries that can be used to store energy for
later usage. Batteries are still very rare to be found nowadays, but
in the future this could change, especially with electric cars becom-
ing more and more popular: an electric car can in fact be used as a
battery.

Batteries are in principle very simple entities: they charge, requir-
ing energy, and they discharge, providing energy. More precisely
a battery charges taking the energy from the network or from a rv
panel; then it stores the energy, that can be later fetched from it to
power an appliance or to be sold to the network. We assume that
there is no significant energy loss in storing energy, even for a long
period of time.

Batteries should not be charged and discharged frequently by small
amount of energy because they suffer great wear from such usage.
To avoid misusing a battery we introduced minimal charging and
discharging constraints. Other constraints are related to physical lim-
itations of batteries: maximal charging and discharging constraints
and maximal and minimal energy storage. Finally, a battery can not
both charge and discharge simultaneously during the same time slot.

10

Collaboration among
different houses
allows greater
improvements

Energy can be stored
in batteries for later
use

2.1 RESIDENTIAL APPLIANCES SCHEDULING

We assume that each house that is equipped with batteries has the
same set of batteries, and the instances used for testing are construc-
ted with only one battery. We also assume that all the houses with
batteries have only one battery of the same type.

2.1.2 Objectives

Different objectives can be considered when managing in a central-
ized way the scheduling of a group of houses.

Minimization of total cost

Assuming the electric company uses a dynamic pricing policy, energy
price varies during the day. At peak hours, when many users require
energy, it is more expensive, while it usually gets cheaper during low
peak hours. Moving heavy activities to low cost time slots allows to
reduce the total cost.

As discussed in Chapter 3, the model assumes that the pricing
policy is not actually dynamic. The electric company may impose
a different price for each time slot, but these prices are assumed to be
known a day ahead.

Minimization of global maximal peak

The global maximal peak is the maximal energy consumption by the
entire aggregate of houses in a time slot, it is the highest point in the
demand curve. Minimizing the global maximal peak leads to flatter
demand curves, which has many advantages already discussed in
Chapter 1.

Tracking a given demand curve

Given a desired demand curve it is possible to schedule the activities
in order to make the actual demand curve as close as possible to it.
Note that this is a generalization of the second objective, which can
be achieved by following a flat demand curve.

2.1.3 Definition

We can now define the Residential Energy Load Management Prob-
lem. Given the following data:
¢ the set of houses;

¢ the set of appliances;

¢ the set of time slots;

11

2.1 RESIDENTIAL APPLIANCES SCHEDULING

Activity Length Load
A 5 1 1 1 1 2
B 3 2 2 2
C 2 1 2
D 4 3 3 11

Table 2.2: Example: activities load profiles

* the execution window for each activity;
¢ the load profile for each appliance;
e the limit on the energy absorbed from the network;

we want to compute the scheduling for all activity, i. e., the starting
time slot for each activity, such as to optimize one of the mentioned
objective functions.

We also consider two extensions, when pv panels and batteries are
available. In that case we have the following additional data:

¢ the set of houses with batteries or rv panels;
* the energy produced by pv panels for each relevant house;
e the characteristics of each battery for each relevant house;

and we need to compute also the amount of energy stored and re-
trieved from batteries.

2.1.4 An example

Let’s now consider a small single-house instance for an example.
There are four different activities, whose loads we report in Table 2.2
and show in Figure 2.1. The total load is 23, and the day is divided
in 9 time slots.

Let’s assume that activities A, B and C start respectively in time
slots 1, 3 and 7. We show the resulting demand curve in Figure 2.2.

Activity D could start in any time slots from 1 to 6. The resulting
demand curves are shown in Figures 2.3a, 2.3b, 2.3¢, 2.3d, 2.3e, 2.3f.
The B area is the contribution of activity D to the demand curve.

The six different starting time slots lead to different demand curves,
whose maximal height is indicated with the dotted line . The best
demand curves — with respect to the minimization of maximal peak —
are the ones where activity D starts in time slots 4 or 5, and they have
maximal height 4. An even better scheduling would be the one that
we show in Figure 2.4, whose maximal height is 3.

In this simplified example activity D could start in any time slot.
However, activities usually have a limited execution window, e. g.,

12

Power
o R, N W

Power
O R, N W e

2.1 RESIDENTIAL APPLIANCES SCHEDULING

Figure 2.1: Example: activities load profiles

1 2 3 4 5
Phase
(a) Activity A load profile

| |
1 2 3 4 5
Phase
(c) Activity C load profile

6

Power

Power

4
3
2
1
0

1 2 3 4 5 6
Phase
(b) Activity B load profile

4
3
2
1
0

1 2 3 4 5 6
Phase
(d) Activity D load profile

Figure 2.2: Example: initial demand curve

Power

Time slot

13

2.1 RESIDENTIAL APPLIANCES SCHEDULING

Figure 2.3: Example: demand curves for different starting time slot of D

S = N Wk U S = N Wk 0o

S = N Wk Ul

I S I B
123456789

(a) Starting in time slot 1

I S I B
123456789

(c) Starting in time slot 3

123456789
(e) Starting in time slot 5

S~ N W T O~ N Wk 0o

S~ N W U

I I |
123456789

(b) Starting in time slot 2

| | | | | | |
123456789
(d) Starting in time slot 4

123456789
(f) Starting in time slot 6

Figure 2.4: Example: optimal demand curve

Power

14

2.1 RESIDENTIAL APPLIANCES SCHEDULING

Figure 2.5: Example: multiple houses

4 4
3 3
2 2
1 1
0 0
123456789 123456789
(a) First house’s demand curve (b) Second house’s demand curve
7
6
5
4
3
2
1
0

123456789
(c) Aggregate profile

activity D must start after time slot 1 and finish by time slot 8. In
such case, solutions in Figures 2.3a, 2.3b and 2.3f would be infeasible.

Multiple houses

The previous example involved only a single house. In multiple
houses scenario each house has its own local demand curve and the
aggregate profile is the sum of all local profiles. We show an example
with two houses in Figure 2.5. Each house has the same set of appli-
ances of the previous example.

Realistic example

Finally, we show an example with realistic data. We show a low
quality solution and a high quality one for the same instance of 200
houses, in the two cases when batteries are available or not. In Figures
2.6 and 2.7 we plot the demand curve for two different solutions of
the same instance.

The low quality solutions are very similar. They have a few peaks,
a large valley at the beginning of the day and also a large peak. The
maximal peak is more than twice the ideal height.

The high quality solutions are instead different when batteries are
available or not. In the latter case, by cleverly scheduling the activ-
ities, we got a solution flat and smooth. There still is a valley at the
beginning of the day, but it is much narrower, and it is due to the
fact that little or no activities can be scheduled at that time of night.
When batteries are available it is even possible to fill this initial val-

15

2.2 RELATED AND PREVIOUS WORK

Figure 2.6: Solutions demand curves (without batteries)

Low quality solution High quality solution
'108 q y '10},8 q y

Energy

0 | | | | | 0 | | |
0 16 32 48 64 80 96 0 16 32 48 64 80 96

Figure 2.7: Solutions demand curves (with batteries)

Low quality solution High quality solution
'109 q y .10},,% q y

Energy

| | |
0 16 32 48 64 80 96

0 | | | | |
0 16 32 48 64 80 96

ley and shave the rest of the demand curve, since batteries have no
constraints like activities execution window, and can be charged any
time. Both high quality solutions are within 2% from the reference
optimum.

2.2 RELATED AND PREVIOUS WORK

The ability to react to fast energy’s price’s changes is a requirement
for the auto regulation of energy usage allowed by the smart grids.
However domestic users lack this ability, and often even the time
to reorganize the electrical devices schedules. With this motivation
in Livengood and Larson [2009] the EB is introduced as a system to
control electrical devices in response to dynamic pricing. Automatic
scheduling is done via stochastic dynamic programming algorithms,
but the EB supports other kind of algorithms in its algorithm bank,
allowing to provide custom algorithms. This paper focuses on tem-
perature controlling and battery charging loads.

A too high prices changes frequency is argued to cause fluctuations
in the energy usage and thus advised to be avoided; a frequency of
one hour is assumed. Finer grain control of order of minutes or even
seconds is still possible: interruptible devices — e. g. clothes dryer —

16

2.2 RELATED AND PREVIOUS WORK

and devices which can function with different energy consumption
- e. g. air conditioning — would be switched off or idled when the
grid is stresses, according to agreements between the users and the
electric company.

In Mohsenian-Rad and Leon-Garcia [2010] an automated system
for appliances scheduling in response to 1BR combined Real Time Pri-
cing (rRTP) is proposed. In Inclining Block Rates (1BR) pricing policy
energy’s price grows if the hourly consumption is above a given
threshold; users are then induced to use energy in a more regular
way. A formal mathematical formulation is used for problem’s defin-
ition and an algorithm for price prediction is used to forecast how
the energy prices will vary in the short term future. The ability to
predict prices has proved very effective in reducing the total cost for
the users, as well as in reducing the Peak To Average (rTA) ratio of
demand curve.

In Kowahl and Kuh [2010] the stochastic dynamic programming ap-
proach used in Livengood and Larson [2009] is discussed and argued
to make assumptions —i. e. discretized states with known transitions
probabilities — that do not hold for real world applications. A rein-
forcement learning approach is proposed, that is able to improve its
performance over time. The softmax algorithm is used: decisions are
taken from a pool with some probability. Whenever a decision lead to
a lower cost its probability increases, and in the long run the probab-
ility distribution should favour optimal decisions. The algorithm was
further adapted to reduce the number of probabilities by using Gaus-
sian approximation and to simultaneously update neighbour states.
The results approached the ones obtained with stochastic dynamic
programming after about 100 days of learning.

In Kishore and Snyder [2010] is shown that, if the houses of a neigh-
bourhood are controlled independently to shave the peaks in their en-
ergy demand curve by raising peaks energy’s price, the result is that
each house moves its heaviest loads to off-peaks intervals. The ag-
gregate demand curve has then new peaks in those that were earlier
off-peaks zones. An controller for multiple houses is then proposed.
An upper limit over the aggregate energy consumption is imposed,
and to each house is guaranteed a minimal amount of energy. If
a house wants to request more energy it is made competing with
possibly other houses with the same intent for the remaining energy
available to the neighbour. A new single house dynamic program-
ming scheduling algorithm is also proposed for accounting the case
when the energy request is refused.

In Ha et al. [2006] a Ts algorithm is proposed for the domestic en-
ergy scheduling and room temperature control. An anticipative layer
predicts energy usage and production in the mid term future using
learning mechanisms, and a reactive layer handles fast dynamics and
short term fluctuations in predictions.

17

2.2 RELATED AND PREVIOUS WORK

In Agnetis et al. [2011] the energy retailer is able to send price /
volume signals to the users, i. e. asking to decrease the current load
under a certain threshold (the volume) in exchange for a reward (the
price). Electrical devices are divided in manageable and non manage-
able, and the former is further divided in adjustable loads and shiftable
loads — the former are devices that can function with different en-
ergy consumption, e. g. air conditioning; the latter are devices whose
starting time may be shifted, e. g. washing machine. Non manageable
loads — as well as distributed power generators like pv panels — are
regarded as disturbance, but an estimate is assumed to be available.

A mathematical programming problem is defined using a weighted
objective function involving three different objectives:

COST MINIMIZATION exploiting price’s changes and retailer’s price
/ volume signals;

MAXIMIZATION OF CLIMATIC COMFORT assumed to be directly re-
lated to adjustable loads;

SCHEDULING CONVENIENCE of the shiftable loads.

Different users may give different importance to each objective by
setting different weights. Tests are run with four weights combin-
ations (three unbalanced and one balanced profiles) and results for
each profile, objective pair — e. g. cost minimization when using a
pure scheduling convenience profile — are discussed.

In Barbato et al. [2011a,b] a MILP model is proposed for minimizing
the total energy cost for cooperative and non-cooperative residential
users. Two pricing policies are considered: a simple two-level peak
and off-peak policy, and a dynamic policy where the price follows
the grid’s status (prices are assumed to be known beforehand). Users
specify execution windows for the appliances with some degree of
flexibility. Interruptible appliances are also considered in a variant of
the model.

For the two-level pricing policy the saving is roughly independent
of the execution windows flexibility, while for the dynamic pricing
policy larger saving is possible for high flexibility scenarios. Inter-
ruptible appliances do not significantly improve the results. Batteries
appear instead to be very effective when charged during off-peak
hours and used to supply energy in peak hours.

In cooperative scenario a group of different houses are considered
and their appliances are scheduled together, imposing a maximal
peak constraint over the aggregate energy demand. Although the en-
ergy cost slightly raises with respect to the non-cooperative scenario,
the demand curve is sensibly flatter and smoother.

This thesis is based on an extension of the model proposed in Bar-
bato et al. [2011a,b], that will be described in detail in Chapter 3.

18

2.3 GENERALIZED ASSIGNMENT PROBLEM

2.3 GENERALIZED ASSIGNMENT PROBLEM

The problem falls in the widely known category of Generalized As-
signment Problems (Gaps). In the Gar there is a set of agents A and
a set of jobs | [Martello et al., 2009]. Each job has a size s; and each
agent has a capacity c,;, any job can be assigned to any agent as long
as the agent’s total capacity is at least the sum of the capacities of
assigned jobs. Each pair agent, job results in a gain g,;. The goal
is to find the assignment of jobs to agents such that the total gain is
maximal.

Setting the activity a to start in time slot ¢ is equivalent to assign
the job a to the agent t. Jobs sizes are given by activities load profiles,
and agents capacities depend on the current scheduling and other
parameters. Sizes and capacities are vectors rather than scalars, since
they represent constraints that hold in multiple time slots.

19

MIXED INTEGER LINEAR PROGRAMMING MODEL

In this chapter we introduce and describe in detail an extension of
the Mixed Integer Linear Programming (mILr) model for the Resid-
ential Energy Load Management Problem proposed in Barbato et al.
[2011a,b]. We also mention improvements to the model and compu-
tational issues for large instances.

CONTENTS
3.1 Model 20
3.1.1 Sets 20
3.1.2 Parameters 21
3.1.3 Variables 22
3.1.4 Constraints 23
3.1.5 Objective functions 25
3.2 Compact MILP model 25
3.2.1 Constraints 26
3.2.2 Improvements 26

3.3 Final model 27

3.1 MODEL

The Residential Energy Load Management Problem can be formu-

lated as a MiLP problem that can be solved with a MILP solver such as
CPLEX.

3.1.1 Sets

The model has the following sets:

T The set of all time slots;

F The set of all phases’;

H The set of all houses;

Hy, C H The set of all rv equipped houses;

Hj, C H The set of all battery equipped houses;
A The set of all appliances;

B The set of all batteries.

Phases are used to define activities load profiles. They are somehow equivalent to
time slots.

20

3.1 MODEL

3.1.2 Parameters

For appliances

STy, Vh € H,a € A The latest starting slot for activity (h, a);

E T;f;“ Vh € H,a € A The earliest ending slot for activity (/,a);
ET"3x Vh € H,a € A The latest ending slot for activity (h, a);
nt, Va € A The length of appliance a;

Ipay Va e A, f € F The power required by appliance a during its
phase f.

The first three parameters define the activity’s execution window.
They are actually redundant since to decide the scheduling only the
minimal and maximal starting slots are needed, plus the length, i. e.,

STM™ = max (STy,., ETSN" — nty, + 1)

1
STy = ET) " —nty, + 1. (31)

However it might be more convenient for the user to specify all three
of them.

For prices

ct Vt e T Bought energy’s price;

g+ Vt € T Sold energy’s price.

For batteries

'yilni“ Vb € B The minimal capacity for battery b;

y?* Vb € B The maximal capacity for battery b;

7™ Vb € B The minimal amount of energy to charge for battery
b;

T, Vb € B The maximal amount of energy to charge for battery
b;

#min Vb € B The minimal amount of energy to discharge for bat-
tery b;

8" Vb € B The maximal amount of energy to discharge for bat-
tery b;

ichy, Vb € B The initial capacity for battery b (i. e. the capacity at
time slot 0);

nn Vb € B Efficiency for battery b.

21

3.1 MODEL 22

For powers
nl’ Vh € Hp,t € T The amount of energy produced by pv panel

of house h at time slot ¢;

ni". Vh € H,t € T Maximal amount of energy the house h is al-
lowed to buy at time slot ¢;

”Z,Mtt Vh € H,t € T Maximal amount of energy the house F is al-
lowed to sell at time slot ¢.

3.1.3 Variables

There are two types of variables: decisional variables and non de-
cisional variables. The latter are defined in term of the former, so
their value is given by the decisional variables. They exist only in
order to simplify the model’s expression, the model itself could be
rewritten with only the decisional variables.

For activities and energy

Xnat Vh€ H,a€ A,t €T Thisvariableis set to 1 if activity (&, a)
starts in time slot £, 0 otherwise;

Ynt Vh € H,t € T The amount of energy bought by house h at
time slot ¢;

zpy Vh € H,t € T The amount of energy sold by house & at time
slot t;

Phatf VheE H,ae€ A teT,feF Energyusedby activity (h,a)
at time slot ¢ if in that time slot it is at phase f, 0 otherwise.

Variable p is used in constraint 3.3. It was however aggregated in the
compact model variant, as explained in Section 3.3.

For batteries

enpt Vhe Hy be B, tc T Theenergy stored in battery b of house
h at time slot ¢;

wfl,b,t Vh € Hy,b € B,t € T This variable is set to 1 if battery b in
house 1 is charging at time slot ¢, 0 otherwise;

w,‘f,b’t Vh € Hy,b € B,t € T This variable is set to 1 if battery b in
house & is discharging at time slot ¢, 0 otherwise;

Uiyt Vh € Hpbe B, t €T Theamount of energy charged in the
battery b in house / at time slot ¢;

vz,b’ . Vh e Hp,be B,t €T Theamount of energy discharged from
the battery b in house h at time slot ¢.

3.1 MODEL

3.1.4 Constraints

Single start for each activity

Each activity starts exactly once during the day, hence the value of
Xpqat is 1 only for one triple h,a,t — or, better, for activity (h, a)
there is exactly one value for t such that x;, ,; = 1,1. e,

ET —nt,+1
th,u,t =1 VYheH,aeA. (3.2)

t=5T},
Instantaneous power

At each phase of an activity the instantaneous power must be equal
to the load profile for that phase, i. e.,

Phatf = PafXna—f+1y VhEHa€ AteT, fEF. (3:3)

This formula picks the right phase at each time slot. If xj, 4 ;1) =

1 for some t, f it means that the activity started f slots ago, hence in
time slot ¢ it is at phase f.

Contractual constraints

A single house is only allowed to buy and sell a limited amount of
energy at each time slot, i. .e,

Yy <" VYheEeHteT

zny <" VheH,teT. (3:4)

Balance equation

The law of conservation of energy must hold for this model: all the

energy provided by any mean to a house must be somehow used.

This constraint represents the balance between energy available to a
house and energy used by that house, i. e,

lh/,_t/ + ”;FZ,Z; +) vg,b,t = Znp + 3) Phapft) Vipse (3.5

~~~ bEB " acAfeF beB
A B ——— D \ o N —
C E F

The terms in the left hand side of balance equation are the ones
corresponding to available energy:

A Energy bought from the net;
B Energy generated by rv panels;
c Energy discharged from batteries.

The terms in the right hand side of balance equation are the ones
corresponding to used energy:

23



3.1 MODEL

D Energy sold to the net;

E Energy consumed by appliances — pj, 4+ is non zero only for the
pairs (f,f) such that in time slot t the appliance is running
phase f;

F Energy charged into batteries.

Of course it is possible that not every house i € H has pv panels or
batteries; the constraint is actually split in these four ones:

A=D+E vt € T,h € H\H,\H,
A+B=D+E Vte T,h € HN (Hp\Hy)
A+C=D+E+F Vte T,h € HN (H,\H,)

A+B+C=D+E+F Vie T,he HN (H,NHp).

Batteries constraints

During a given time slot a battery is either charging, discharging or
idling, it is not possible to charge and discharge at the same time, i. e.,

Wyt + w;iz,h,t <1 VheHy,beBteT. (3.6)
Batteries have minimal / maximal capacity, i. e.,
enpt < v YheHy,beB,teT
enps > Y™ Vh € Hy,b€B,teT. 5.7)

Batteries have maximal charge / discharge rates. In order to pre-
vent charging / discharging a battery of small amounts of energy,
there exist additional constraints on minimal charge / discharge rates.

Ot ST Whyy VhEH,beBteT
05 > T, VheHybeBteT
iy < OFCwi,, VheH,beBtET
Ug,b,t > ﬂrbnmwg,h,t Vh € H,,b € B,t € T.

Charge at time slot t is the charge at time slot t — 1 plus energy
charged minus energy discharged — except of course at first time slot,
i. e,

(3-8)

ichy, Vh € Hy,,be B,t =1
Chbt =
enpi—11 m’v;z,b,t — %vz,b,t Vh € H,,b € B,t € T\ {1}.
(3-9)
Maximal peak

This variable is the only one related to the entire set of houses, its
lower bound is the maximum over all time slots of the energy bought
by all houses, i. e.,

peak > Z ypy VEeT. (3.10)
heH

24



3.2 COMPACT MILP MODEL

3.1.5 Objective functions

Minimize total cost

The objective is to minimize the difference between the money spent
to buy energy and the money gained from selling energy;, i. e.,

min f (Lﬁ,ﬁ) = Z (ctyt — tht) . (3.11)

teT

Minimize global maximal peak

The objective is to minimize the global maximal peak, i. e. the max-
imal height of demand curve, i. e.,

min f (1,042&) = peak. (3.12)

3.2 COMPACT MILP MODEL

During the thesis work we discovered a problem in the original model:
Constraint (3.2) forced each activity to start exactly once inside its ex-
ecution window, but it did not affect in any way what happens outside
it. In a feasible solution some appliances might start many times?.

Fixing this issue would have been trivial by just changing the con-
straint (3.2) to

th,a,t =1 VheH,aecA, (3.13)
teT

so that only one variable xj, ,; were non zero for each activity (h,a).
But a better approach had been to partially rewrite the model in or-
der to completely remove those useless variables. The new model
introduces two new sets for each activity:

T°ha € T The time slots where activity (,a) is allowed to start;

T;, € T The additional time slots where activity (h, a) is allowed to
run.

The two sets are contiguous and depend directly on the execution
window and the length of each activity and are computed in a pre-
processing phase, i. e.,
T, = [max (STj,, ET" — nty, + 1), ET® — nty, + 1] (3.14)
' ' ’ 1
Ti, = [ETiX — nty e+ 1, ET] -
The xj,,; variables are defined in term of T}, :

1 If activity (h, a)starts in time slot ¢
Xnat = Y ( ) Vit € Tﬁ,a'

0 otherwise

They actually did. We noticed that by solving a reduced MILP: some appliances had
multiple starting slots.

25



3.2 COMPACT MILP MODEL 26

Now the guilty constraint (3.2) can be defined as

Z Xpor =1Vh e Hac A (3.15)

te T;/ﬂ

without any other checks: it is not possible that some xj,,; variable
is 1 somewhere else, because there exist no such variable outside the
execution window.

3.2.1  Constraints

Most of the constraints are now defined in term of T;  and T} .

Instantaneous power
The original constraint contained variable xy, ,; so it was updated to
Phatf = 1Pa,fXna - f11)
VheHae AteT, ,UTy,, (3.16)
fe{f:t—f+D)eT,}.

3.2.2  Improvements

The compact model is equivalent to the (corrected) original model,
but it has far less variables. MILP solvers decompose a single human
readable constraint in many constraints for each variable, e. g., Con-
straint (3.4) would be decomposed in the |H| |T| many constraints

IN

i

Vi1

in
Y12 =70

A

A
o

Y73 >

Y74 =7y

A

*7

one for each pair (h,t). Since some constraints are now defined in
term of T;  and Tj ; instead of the whole T this means that many
constraints were also removed. T° is the subset of time slots where
an activity can start. Most of the times it contains only few time slots,
since execution windows rarely span more than a couple hours; the
improvement is therefore quite significant.

Lesser variables and lesser constraints means lesser memory — and
to some extent even faster computing time — so it is now possible to
solve larger instances than the one solvable with the original model.
For instance, we used CPLEX to check solutions feasibility during the



3.3 FINAL MODEL

progress of the thesis: using the original model we could check only
instances up to 35 houses, larger ones required too much memory;
with improved model we could even check instances with 400 houses
(CPLEX was executed on a machine with 2 GiB RAM).

3.3 FINAL MODEL

Another weakness of this mathematical model is that the variable
Phaft 18 extremely large. A variant of the model was created by
aggregating its values such that it depends only on the two variables
h and t. p is defined as

P =Y paftng—fi1) VhEHteT.
a€AfEF, (- f+1)ET;,

Now the term E in the balance constraint (3.5) simply consists of
Pht

po a . _
Yt T Ty T Y Oy = Znt T Pie T Y iy
~~ ~~ B ~~ ~~ B
A B —— D E ——
C F

27



GENERATING AN INITIAL FEASIBLE SOLUTION

In this chapter we describe a Greedy Randomized Adaptive Search
Procedure (GRASP) to generate an initial feasible solution for the Res-
idential Energy Load Management Problem problem. We define the
structure of a solution and the procedures to update it when schedul-
ing activities. We mention some issues in distinguish good solutions
from bad solutions and we propose few objective functions to address
these issues. We also describe an alternative method to generate an
initial feasible solution through Partial Linear Relaxation (PLR).

CONTENTS
4.1  GRASP algorithm 28
4.2 GRASP for the Residential Energy Load Management Prob-
lem 29
421 Algorithm 29
4.2.2  Structure of a solution 29

Energy profile 30
4.2.3  Updating the energy profile 30
Adding a load 31

Removing a load 31
Batteries as loads 32
4.2.4  GRASP in detail 33

Using batteries 33
4.3  Objective functions 35
4.3.1 Ideal demand curve 36
Maximal difference from ideal 36
p-norm of difference from ideal 36
Ideal curve in GRASP 40
4.3.2 Implemented functions 40
Maximal aggregate peak 40
Maximal difference 40
Maximal difference and p-norm 42
Maximal difference plus p-norm 42
Maximal peak plus maximal difference plus p-norm 42
4.3.3 Infeasible solutions 42
4.4 Partial Linear Relaxation with reduced miLpr 42

4.1 GRASP ALGORITHM

The greedy algorithm is an algorithm to generate an initial feasible
solution step by step, making at each step the best local choice. Greedy
Randomized Adaptive Search Procedure (Grasr), see e. g. Feo and
Resende [1995], is a randomized extension of the greedy algorithm:
at each step a set it makes a random choice among the best local

28



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 29

choices. The procedure is repeated few times, and the best generated Solution is built step

solution is returned. by step, choosing
among the best
candidates

4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT
PrROBLEM

4.2.1  Algorithm

The initial solution is empty, i. e., no activities are scheduled yet. We
loop over all the activities®, sorted by flexibility. For each activity
we generate the set of candidates, i. e., the set of starting time slots
belonging to the execution window of the activity. We evaluate each
candidate with a given objective function and we filter out low quality
candidates, according to a filtering criterion, and then we randomly
pick the starting time slot.

4.2.2  Structure of a solution

In this section we describe the structure of a solution, the data struc-
ture used to evaluate a solution, and how we can add and remove
activities while correctly updating such data structure.

A solution of the MILP model is completely determined by the val-
ues of the free variables:

Xp q,+ determines when an activity starts during the day;
w ﬁ, bis wg,b, ; determines when a battery is charging or discharging;

Ul bt vi,b, ; determines how much a battery is charging or dischar-
ging.

All the other variables can be directly or indirectly obtained from
these. For example it is possible to compute the energy bought from
house h at time slot t using only the free variables as

Yut = Z Z lpa,th,a,(tferl)-

aeA,teTﬁ/ﬂUT;ﬂ feF

In GrasP and the other methods however we make decision based
on the value of some non free variables like v}, ; or even their aggreg-
ates like y; = Y_jcy Yn,t- Therefore we keep track of some of them
as well.

A solution is then made of three parts:

1. the free variables: the starting slot for each activity and the
battery flows for each house, battery and time slot;

1 An activity is a pair of house, appliance: (h,a) € H x A.



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 30

2. some additional state variables: the batteries energy and the list
of activities in each time slot;

3. an energy profile.

Energy profile

) Energy profile
An energy profile can be thought of as the shape of a solution. It represents the shape
contains: of a solution

* the energy bought by the single houses at each time slot;
* the energy sold by the single houses at each time slot;

* the energy bought by the whole aggregate at each time slot, i. e.,
the demand curve;

¢ the energy sold by the whole aggregate at each time slot.

We use the energy profile to evaluate a solution, and so in Grasr and
other procedures we make decisions on which activity to move or
which battery to charge and discharge depending on it.

The main reason to split the energy profile from the solution is that
not only solutions have an energy profile: during a Grasp iteration
we consider only one activity, and we create a set of candidates to
addition as pairs of starting slot and resulting energy profile (plus
battery information if needed).

4.2.3 Updating the energy profile

The energy profile is composed of three data structures:
BouGHT; energy bought by the aggregate at time slot ¢;
SoLp; energy sold by the aggregate at time slot ¢;
FLowy; energy bought or sold by house / at time slot £.

Since a house can only either buy or sell energy in a time slot it is
possible to use a single data structure: if flow is positive it means the
house is buying Flowy, ; energy during that time slot, otherwise it is
selling —Flowy, ; energy. Two basic
There are only two basic operations that can modify the energy  operations: adding
profile: a load / is added to house & at one time slot ¢, or a load ¢ is and removing a load
removed from house /1 at one time slot ¢. Activities last usually more
than one time slot, so adding or removing an activity means adding
or removing a list of independent loads. In Grasr loads can not be
removed, but only added.



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

Adding a load

At the beginning of GrRASP no activity is scheduled yet, hence the
energy profile is empty. If there are houses with solar panels all their
energy is sold to the network. Then we start scheduling activities,
adding loads to the profile.

When a load 7 is added to house h at time slot ¢, it might be that
the house is selling energy in that time slot. It means that there is still
some unused energy from the solar panels

EnergyAvailableInPV < max (0, —Flowy, ;)
which can be used for the new load instead
EnergyFromPV < min (¢, EnergyAvailableInPV),
while the rest must be bought from the net
EnergyFromNet < ¢ — EnergyFromPV.

These equations handle gracefully all the three possible cases:

1. the energy for the entire load ¢ can be supplied by the solar
panels, EnergyFromPV = /¢ and EnergyFromNet = 0;

2. the energy for the entire load ¢ must be bought from the net
since no energy is left from solar panels, EnergyFromPV = 0
and EnergyFromNet = /;

3. some of the energy can be taken from the panels and the rest
must be bought from the net.

Then we update energy profile with the newly added load:

Bought, < Bought, + EnergyFromNet
Sold; < Sold; — EnergyFromPV
Flowy, ; < Flowy,; + ¢.

Removing a load

In Grasr we only add loads to the energy profile. However, for the
other methods that we developed and that we discuss in Chapter 5
we need to move a load from a time slot #; to a time slot f,, which is
equivalent to removing it from the former and adding it to the latter.
Thus it is enough to provide a procedure to remove a load ¢ from a
house h at time slot t. We chose to cover the load removal procedure
here, as it is the dual of load addition, even if it is irrelevant for GRASP.

When a load ¢ is removed from house & at time slot ¢ the house
might be buying some energy from the net

BoughtSoFar <— max (0, Flowy, ;) .

31

Moving a load is
equivalent to
removing it from the
initial place and
adding it to the new
place



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

If that quantity is less than ¢ then the rest of the energy must come
from the solar panels

FromPV < max (0, / — BoughtSoFar),

hence by removing the load ¢ only the energy actually bought for the
load will be saved

NoLongerBought < ¢ — FromPV.
These equations handle gracefully all the three possible cases:

1. all the energy was bought, FromPV = 0 and NoLongerBought =
6

2. all the energy came from the solar panels, FromPV = /¢ and
NoLongerBought = 0;

3. some of the energy came from the panels, the other was bought
from the net.

Then we update the energy profile after having removed the load:

Bought, < Bought, — NoLongerBought
Sold; «+ Sold; + FromPV
Flowy, ; <= Flow;,; — £.

This procedures cleverly maximizes the solar panels usage: the en-
ergy is bought from the net only if there is not energy left in the
panels.

Batteries as loads

Although in the previous sections we assumed that the sold energy
came from the solar panels, this is not always true. Flow;, ; represents
just a pool of energy used for house 4, if it is positive then some entity
requires energy, if it is negative then some entity provides energy.
When initially an empty solution is created the flows are set to the
(negative) energy from the panels: they are the entities providing
energy; activities are instead entities requiring energy. When both
kind of entities are present at time slot ¢ they compensate each other
and the result is their algebraic sum.

Batteries are entities too. A charging battery requires energy, a dis-
charging battery provides it (a battery is either charging or dischar-
ging during a time slot, it is not allowed to do both). So charging a
battery of v , ; has the same effect of adding a load ¢ = v} , , to house
h at time slot . On the converse discharging a battery of vﬁ,b,t has the
same effect of removing a load ¢ = Uﬁ,b,t from house h at time slot .
Additional data structures must still be maintained because batteries
has constraints on whether their load can be added or removed, but
their effect on the energy profile is just a special case of adding and
removing loads.

32

Using batteries is
done by adding and
removing loads



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

4.2.4 GRASP in detail

We show the complete GrasP in Algorithm? 4.1. Note that ST;}/‘;“ and
ST, are obtained by the model’s data using (3.1).

The initial solution is empty, i. e., no activities are scheduled yet.
The initial energy profile is flat and nil. At first we sort the activities
by flexibility before scheduling them. Flexibility measures how much
an activity starting time slot can be moved, and it is defined as the

flexibility, = ET"® — max (ET™™, ST, + nt,)
= ST — ST;n

In this way the most critical activities, i. e., the ones that have a
small execution window, are scheduled sooner than the others. A
low-flexibility activity can start in only few time slots, and in latest
stage of GrRasP there is the chance that choosing any of such time slots
result in an infeasible solution. High-flexibility activities can instead
start in many more time slots, and therefore it is less likely that all of
them result in an infeasible solution.

For each activity we generate a list of candidate starting time slots,
corresponding to every time slot within the execution window. For
each candidate we make a copy? of the energy profile, add the activ-
ity in the candidate starting slot and compute the resulting energy
profile. Each candidate is then evaluated with a given objective func-
tion, and low quality candidates are filtered out according to one of
the following criteria:

1. keep the best N candidates;

2. keep all the candidates whose value is in the top a percentile,
i. e, their value is less than

(1 — ) (worstValue — bestValue) + bestValue, 0<a < 1;

3. keep the best schedule and all the schedules with its same value
(equivalent to the second criterion with « = 1).

We then choose randomly the starting time slot for the current activity
among the best ones. Finally we update the current solution and
energy profile.

Using batteries

If there are batteries available it is possible use them to schedule activ-
ities in GrAsr. We analyse the load profile of the activity to verify if

We used the notation from Cormen et al. [2001] for the algorithms. In particular, the
symbol > indicates a comment.

The actual algorithm makes an incomplete copy of the energy profile, see Section A.1.1
on page 92.

33

Activities are sorted
by flexibility

Different criteria for
filtering out bad
candidates



4.2 GRASP FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

Algorithm 4.1 GRASP

GRASP()

1 solution <— @

2 energy-profile < 0

3 activities < {(h,a) € H x A}

4 SORT-BY-FLEXIBILITY (activities)

5 for (h,a) € activities

6 do candidates <— @

7 > Loop over the execution window

8 for t < ST" to ST

9 do m < (h,a,t)
10 p < Cory(energy-profile)
11 ApD-ACTIVITY (P, M)
12 if FEASIBLE(P)
13 then candidates < candidates U (m,P)
14 > All candidates were generated
15 good-candidates <— FILTER(candidates)
16 (m*,p*) < Ranpowm(good-candidates)
17 energy-profile < p*
18 o> Set the starting slot for activity (h,a)
19 solution < solution U m*
20 UPDATE-ACTIVITIES-IN-EACH-TIME-SLOT (solution)
21 solution <—solution U energy-profile

22

return solution

34



4.3 OBJECTIVE FUNCTIONS

Figure 4.1: Same maximal peak for different solutions

S R, N WK U\
S P, N WK Ul

1 2 3 4 5 6 1 2 3 4 5 6
(a) Solution a (b) Solution b

the needed energy can be produced by batteries in some time slots.
Batteries constraints must be satisfied in such timeslots, i. e., the dis-
charged energy must be at least 9{"". Then the sum of loads in these
time slots is the total load to charge in the battery in earlier time slots,
while loads in other time slots are normally purchased from the net
(or taken from rv panels).

We check all previous time slots to see if it is possible to charge
the battery with the required energy amount and if the capacity is
enough to store it until the discharging time slots. For each alternat-
ive, if the resulting solution is feasible, we add it to the candidates
list, hence battery-scheduled candidates compete with normal ones.

4.3 OBJECTIVE FUNCTIONS

In this section we mention some issues we experienced with objective
functions and we investigate different objective functions in order to
find the most suitable one for the Residential Energy Load Manage-
ment Problem.

The objective function ranks solutions according on their quality. In
a minimization problem solutions with low values have high quality.

At first we used the maximal peak of the aggregate demand curve;
minimizing such objective function lead to flat demand curves. How-
ever, a large number of candidates — even if very different among
themselves — had the same objective function value.

We provide an example of such behaviour in Figure 4.1: the two
solutions have the same maximal peak, however solution b is more
regular than solution a. If those were optimal solutions we could
as well pick one randomly, but if we were going to schedule other
activities we prefer the most regular one. However the maximal peak
objective function can not distinguish between these two solutions.
This effect is due to the bottleneck objective function, the solution’s value
depends only on the the single worst time slot.

35



4.3 OBJECTIVE FUNCTIONS

4.3.1 Ideal demand curve

To overcome this problem we tested another objective function. Our
aim is to minimize the maximal peak of demand curve, we want the
most regular curve as possible. The ideal demand curve would com-
pletely flat, so that the energy requirement during the whole period
would be constant. This coincides with the solution with minimal
maximal peak. The demand curve is a rectangle, whose height is the
demand curve’s area — which is constant, it is the sum of all activities
loads — divided by the length of the period, i. e., the number of time
slots:

l
idealt _ ZhGH,aelz;_,{eF pa,f.

Maximal difference from ideal

Of course it is very unlikely that a scheduling corresponding to the
ideal solution actually existed, however we can define a distance
between the current solution and the ideal one, and minimize such
distance. We started with minimizing the maximal difference from
ideal

dlfft = |idealt — yt|

min max diff;.
t

Contrary to the expectation, the maximal difference objective func-
tion showed to perform extremely badly, much worse than the max-
imal peak one. The reason is due to the data instances used for tests:
since very few activities could be started in the earliest time slots,
very little amount of energy is consumed, and that amount is very far
from ideal. Earliest time slots are thus a large lower bound to max-
imal difference objective function, as we show in Figure 4.2: the two
solutions have nearly the same maximal difference value, but they
are otherwise completely different. This is another case of bottleneck
objective function.

The problem does not arise if the ideal solution is constructed such
as to acknowledge that in earlier time slots energy consumption is
low, as shown in figure 4.3.

p-norm of difference from ideal

Another approach other than minimizing the maximal difference is
to minimize the difference’s total area. This does not suffer from the
previous problem, since the contribution from earlier time slots is
only a part of the total area, and even if it has a large lower bound
the total area can still be reduced by reducing contributions in other
time slots.

36

Ideally the demand
curve should be flat

Maximal difference
still suffers from
bottlenecks

Difference’s area
does not suffer from
bottlenecks



4.3 OBJECTIVE FUNCTIONS 37

Figure 4.2: Same maximal difference for different solutions

10% -10*

=
Q1
=
6] ]
T
\

Peak energy
—_

Peak energy
—_

I
o
o
o1

0

| | | | | 0 | | | |
0 16 32 48 64 80 96 0 16 32 48 64 80 96

(a) Solution ¢ (b) Solution d

Figure 4.3: Maximal difference for exponential ideal curve

104
T

Peak energy

| | | |
0 16 32 48 64 80 96



4.3 OBJECTIVE FUNCTIONS

Two solutions are shown in Figure 4.4. In both solutions the max-
imal peak is 8 (in time slot 2) and the maximal difference from ideal
is 34/8 (in time slot 1), but solution e is more regular than solution f.
The area bounded by the ideal and the actual curves, defined as the
sum of difference in each time slots, i. e.,

area = ) _|diff;|
t

9 15 1
f(x,) 1+Z+61

~75

9 15 _5 _ 1 _ 3
Flag) =g+ g r2 gty

=105,

and shown in red E23 in Figure 4.5, is instead very different, and
captures more information about the solution.

The difference area has a huge drawback as well: a little difference
over many time slots counts as a large difference over few time slots,
the two solutions in Figure 4.6 have the same value. A better altern-
ative is to generalize the area and use the p-norm of the difference

|diff]|,, = C/Z |dife? |,
t

so that short large differences produce a larger norm than long small
differences. Different values for p give different results (see Sec-
tion 6.1.1 on page 66), but the most effective ones seem to be 2 and 3.
Note that the maximal difference is the limit of the p-norm

max diff; = lim ||diff||, = ||diff||, -
t p—o0 P
In the previous example the 2-norms are

rea =)+ (5) ()

~ 442

1) - (o (e () 6

38

p-norm is effective
to evaluate solutions



4.3 OBJECTIVE FUNCTIONS

Figure 4.4: Solutions with same maximal peak and difference from ideal

8 8
6 6
4 4
2 2
0 0
123 45678 123 45678
(a) Solution e (b) Solution f

Figure 4.5: Solutions with diverse area of difference

8 8
6 6
4 4
2 2
0 0
1 23 456 7 8 1 23 456 7 8
(a) Solution e (b) Solution f

Figure 4.6: Solutions with same area of difference

S N B~ O @

1 23 456 7 8 1 23 456 7 8
(a) Solution g (b) Solution h

39



4.3 OBJECTIVE FUNCTIONS

For solutions e and f they are much closer than the 1-norms, since for
p > 1 the p—norm is dominated by the largest coordinates, i. e., the
first two time slots, which are the same for the two solutions. For the
same reason for solutions g and & the 2-norms are no longer the same
as the 1-norms, but instead they penalize solution d. For p — co the
p-norm tends to the maximal coordinate, as shown in Figure 4.7.

The final steps we took in defining an objective function was to
use information from all the functions described here to evaluate a
solution.

Ideal curve in GRASP

During GrRAsP execution only a subset of activities are scheduled,
hence the actual demand curve can be very far from the ideal one.
The ideal curve area is taken as the energy of the activities currently
scheduled.

4.3.2  Implemented functions

Different objective functions were implemented. The following nota-
tion is used:
max (x)=Max peak of solution x
max (x — I) £ Max difference from ideal

|x—1I], £ p-norm of difference from ideal.

A solution is lesser than another if the former improves upon the
latter.

Maximal aggregate peak

The original function from the mathematical model. Solution’s value
is its maximal aggregate peak. A solution is lesser than another if its
maximal peak is lower.

Value (x) = max (x)

x, < xp if max(x,) < max (x;)

Maximal difference

Solution’s value is the maximal absolute value of difference from
ideal. A solution is lesser than another if its maximal difference is
lower.

Value (x) = max (x — I)

x, < xp if max (x, —I) < max(x, —I)

40



4.3 OBJECTIVE FUNCTIONS

Figure 4.7: p-norms for various values of p

T T I I I I
10 I- +H£€_1Hp
- Ef—l‘
P

- |2, — Il = max (x, — I)

= | .-
2, -
0 | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
(a) Solutions e and f
I I I
10} —— 1g—IHp l
- Eh_”p
gg—IH :max<gg—1)
8| 00 |
- ||, = If[oe = max (x;, — I)

(b) Solutions g and h

41



4.4 PARTIAL LINEAR RELAXATION WITH REDUCED MILP 42

Maximal difference and p-norm

Solution’s value is the maximal absolute value of difference from
ideal plus ten time the p-norm. A solution x, is lesser than a solution
xp, if x,’s maximal difference is strictly lesser than x;’s one, otherwise
X, is lesser than xj, if x,’s p-norm is lesser than x;’s one.

Value (x) = max (x — I) + 10 [|x — I,

x, < x, if max (x, —I) < max (x, —I) max(x, —I) # max(x, —I)

12 =11l < llxp = 11l
Maximal difference plus p-norm

Solution’s value is the maximal difference plus the p-norm. A solu-
tion is lesser than another if its value is lower.

Value (x) = max (x —I) + [[x — I||,

x, < xp if max (x, — 1) + [[x, = I|, < max (x, — I) + [[x, — I,

Maximal peak plus maximal difference plus p-norm

Solution’s value is the maximal peak plus the maximal difference
plus the p-norm. A solution x, is lesser than a solution x; if x,’s
maximal peak is strictly lesser than x,’s one, otherwise x, is lesser
than a solution x; if x,’s maximal difference is strictly lesser than x;’s
one, otherwise x, is lesser than x; if x,’s p-norm is lesser than x;’s
one.

Value (x) = max (x) + max (x — I) + [|x — I,

) < max (x,) max (x,) # max (x;)

—1I) <max(x, —I) max(x,—1I)# max(x, —I)
ll2g = Ill, < llxp =11,

4.3.3 Infeasible solutions

It is possible to instruct GRASP to generate solutions where the max-

imal local peak Constraint (3.4) does not hold. This is useful when we

improve such solutions with local search using infeasible exploration,
see Section 5.2.10 on page 56.

4.4 PARTIAL LINEAR RELAXATION WITH REDUCED MILP

To generate good initial feasible solutions we can also use the Partial
Linear Relaxation (PLR) with reduced MILP procedure.



4.4 PARTIAL LINEAR RELAXATION WITH REDUCED MILP

In the original miLr model all the x, ,; variables are binary integer,
i. e, they can only assume 1 or 0 values. This constraint is relaxed,
producing a Partial Linear Relaxation of the original problem (vari-
ables wli,b,t and wZ,b,t are still integer, but they are much fewer than
variables xj, ,¢). This MILP problem can be solved to optimal in very
short time with a MILP solver, at price that those variables might as-
sume any real values in [0,1]. Due to the constraint (3.2) (or (3.13)),
however, we have that

th,a,t =1 Vh,ﬂ S H,A
t

In practice most of the x;,,; variables are set to 0, which is already
an integer. We fix a random subset of those variables to 0, we enforce
the integrality constraint, and we solve this reduced MiLP with a given
time limit. This time the solution is feasible, and — although unlikely
optimum — it might have high quality.

By fixing a variables xj,,; to 0 we forbid activity (h,a) to start in
time slot ¢. It can still start in any other feasible time slot, so even by
tixing few of them, we are not making the scheduling too rigid.

43

Integrality
constraint is
released to generate
a reduced problem,
which is solved with
time limit



TABU SEARCH HEURISTICS AND IMPROVING A
SOLUTION

In this chapter we describe a Tabu Search (ts) algorithm for the Res-
idential Energy Load Management Problem. Initially we describe the
characteristics of the Ts meta-heuristic, then we explain in detail what
kind of moves we implemented to explore the neighbourhood, how
we control the algorithm to switch moves at runtime, how we enabled
exploration of infeasible region and diversification. We also mention
local branching algorithm as an alternative to Ts to iteratively explore
the solution space.

CONTENTS

5.1 Tabu Search 45
5.2 Tabu Search for the Residential Energy Load Management

Problem 46
5.2.1  Shift move 47
5.2.2 Swap move 47
5.2.3 Battery move 47
Example 48
5.2.4  MILP move 51
5.2.5  MILP-batteries move 51
5.2.6  MILP-zeroes-fixing move 51

5.2.7  Large move 53

5.2.8 Mixed move 53
Tabu Search control 54

5.2.9 Tabu Moves 56

5.2.10 Exceeding maximal local peak 56
Infeasible exploration 58

5.2.11 Early stopping and diversification 59

5.3 Local branching 59

5.3.1  Local branching for the Residential Energy Load Man-
agement Problem 60
Refining 61

In local search methods we start from an initial feasible solution
and we improve it iteratively. At each iteration, given the current
solution x;, we generate its neighbourhood

Ny={x:3m:x=x, &m},

i. e., all the solutions which can be obtained by applying a move m* to
Xy, and we choose the next solution x;, 1 in Nj. This iterative process
generates a sequence of improving solutions hopefully converging to

1 The notation x @ m stands for “apply move m to solution x”.

44

Solution is improved
iteratively by
exploring other near
solutions



5.1 TABU SEARCH

an optimal solution. When x;, is chosen as the best solution in Nj
the algorithm is known as the steepest descent method, because at each
iteration it takes the most promising direction, and it stops at the first
local minimum.

5.1 TABU SEARCH

Tabu Search (Ts) is a meta-heuristic based on an iterative local search
algorithm [Hertz et al., 1995, Glover and Laguna, 1998] which pre-
vents stopping in local minima. At each iteration, when we choose
the next solution, we add the inverse move to a Tabu List (TL). When
exploring the neighbourhood we ignore all the moves in 11, i. e., the

Tabu Moves (TMs), and then we choose the best neighbour, even if it
is not improving the current solution. TL has fixed size and contains
only recent moves.

T™s forbid to go back during local search: whenever we reach a
local minimum, we continue and start climbing its walls. In the next
iterations we can not fall again in the minimum, since moves that
lead back to the local minimum are forbidden. In few iterations we
will be — hopefully — outside the local minimum.

Aspiration criterion

The idea of T™s is to forbid cycles of solutions in Ts, i. e., to forbid
visiting already known solutions. However sometimes a T™ can for-
bid to visit an unknown solution. If such solution is better than any

one we found so far we ignore the TM and we insert it in the neigh-
bourhood.

Intensification

With intensification we focus Ts in a small region of solution space.
For instance if we know the approximate region of a local minimum,
we can intensify Ts in order to obtain the actual minimum. To start
intensification we can either reduce the TL size, so that less nearby
solutions are forbidden, or we can use a custom objective function
that increases penalty on solutions far from the current one for few
iterations.

Diversification

Diversification is the dual of intensification: it drifts Ts to a com-
pletely different region of solution space. To perform diversification
we can either start over from a random initial solution, or we can use

45

Tabu Search allows
to escape from local
minima



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 46

a custom objective function that increases penalty on solutions near
the current one for few iterations.

Strategic oscillation

The solution space is explored moving from a feasible solution to
another. It might happen that to reach a minimum we have to cir-
cumnavigate an infeasible region with a long sequence of feasible
moves. By temporary relaxing some constraints we can instead cross
the infeasible region and reach the minimum in less iterations.

Ts has been successfully applied to a large range of discrete op-
timization problems [Glover and Laguna, 1998]. Ahuja et al. [2002]
provides a survey of techniques useful in local search problems with
very large neighbours.

5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LoAD MAN-
AGEMENT PROBLEM

In this section we describe in detail the algorithms we developed for
the Ts meta-heuristic.

We implemented a Ts algorithm that supports different types of
moves. At each iteration we generate all the possible moves m € M of
the specified type and apply them the current solution, obtaining the
neighbourhood. Then we rank all neighbours with a given objective
function and we take the best one for the next iteration.

Different types of moves explore different types of neighbourhoods:

SHIFT AND SWAP MOVES A new solution is obtained from the cur-
rent one by changing the starting time slots of one or more activ-
ities;

BATTERY MOVES A new solution is obtained from the current one
by changing the usage of batteries, i. e., when and how much
they are charged and discharged;

REDUCED MILP MOVES A new solution is obtained from the current
one by solving a reduced miLP;

LARGE MOVE A new solution is obtained from the current one by
rescheduling a large part of the activities using GrRAsP.

In order to obtain the best from each move type, we implemented a
procedure to dynamically change the current move type. Some move
types also support the exploration of the infeasible region. The heur-
istic can also detect when the solution have not improved in the latest
iterations, and can decide to stop the exploration before reaching the
maximal iterations limit. Instead of ending the exploration it is also
able to perform diversification.

Exploration crosses
infeasible regions



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 47

5.2.1  Shift move

A shift move is the simplest possible move: we shift an activity* (h, a)
from a starting time slot ¢,q to another time slot tnew. In this iteration
we first populate a list of interesting activities, i. e., activities that in-
fluence the maximal peak, then we shift each of these activities to all
time slots within its execution window, generating a set of neighbour
moves N = {(h, 4, ty4, tnew) }. We then select the move that generates
the best neighbour. The size of the neighbour is O (hat).

5.2.2  Swap move

A swap move resembles a sequence of two shift moves: we shift
two activities (hy,a1), (hy,az) from starting time slots #; 514, f2,01d tO
t1,news t2new- N1, h2 could be the same, and so 41,4, (though at least
one between house and appliance must differ). The main differ-
ence from a sequence of two shift moves is that t; new = 2019 and
t1,01d = t2new- Another difference is that even if the intermediate solu-
tion is infeasible the move is feasible as long as the final solution is
sO.

The size of the neighbourhood in this case is much larger than
the one for shift moves: O (h%a?) compared to O (hat) ~ O (ha): for
a 200 houses and 11 appliance instance we have 4840000 > 2200.
Since exhaustive exploration of the neighbourhood is just out of reach,
we sample the neighbourhood. We select a random activity (hy,a1)
among the ones influencing the maximal peaks, starting at t; 5jq. Then
we select all activities (hy,a2) that can start at t1 g and if (h1,41) can
start at ¢, 514 as well, then we swap them. If the result is feasible with
respect to the local maximal peak then the iteration is concluded, as a
stop-on-first-improvement policy is used (a minimal number of gener-
ated neighbours can be specified, though), otherwise we try another
random pair of activities.

5.2.3 Battery move

This move focuses only on batteries. We first find a time slot t; in
which a battery can be discharged, then we find a preceding time slot
tc in which the battery can be charged.

For each time slot t; corresponding to one of the highest peaks,
we loop over the battery-equipped houses. For each house we try
anticipate buying the amount of energy ¢ that it buys in that time
slot, somewhere before the current time slot, storing it in batteries,
and releasing it in ¢;. In t; we must have the following:

2 An activity is a pair of house, appliance: (h,a) € H x A.

An activity's
starting time is
shifted to another
slot

Neighbourhood’s
size is large for swap
moves

Looking for a
suitable pair of time
slots, a first one with
low peak where to
charge the battery,
and a second one
where to discharge it
to decrease peak



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

1. It is possible to discharge at least ¢ energy. Otherwise we con-
tinue with the next house in the list.

2. The new battery flow, i. e., the old one plus ¢, is above 9{7"“‘.
Otherwise we continue with the next house in the list.

To find a time slot f, in which the battery is charged, we check the
time slots from t; — 1 to 1 verifying if:

1. There is enough battery storage available. If not, we continue
with the next house in the list. We can not charge the battery
in earlier time slots, since we have to store the energy in the
battery until ¢4, but in the current time slot the battery has not
enough capacity.

2. In the current slot it is possible to charge the battery. Batteries
can either idle, charge or discharge in a given time slot, if the
latter is true then we can not charge it. However, an earlier time
slot might still be suitable, so we continue with the previous
time slot.

3. It is possible to buy at least ¢ energy. Otherwise an earlier time
slot might still be suitable, so we continue with the previous
time slot.

4. The new battery flow, i. e., the old one plus /, is above 7™". Oth-
erwise an earlier time slot might still be suitable, so we continue
with the previous time slot.

If all tests succeeded then it is possible to buy ¢ energy at time slot
tc, storing it in batteries until f; and then release it to the house. We
produce a new solution member of the neighbourhood by applying
these changes. After we tried all the combinations of house, f, and t;,
we choose the best solution in the neighbourhood as next solution.
Algorithms 5.1 on the next page and 5.2 on page 50 show the pro-
cedure in detail. energy-profile* is the best neighbour’s profile and it is
overwritten in the bottommost loop; we do not show other variables
containing solution’s state for the best neighbour (e. g. t;, t.), but
we store them alongside the best profile and we update the solution
with them. Note that in the actual algorithm we store the best incom-
plete energy profile described in Section A.1.1 on page 92 (the only
difference is that in line 18 the profile is not copied completely).

Example

We now show a simplified example of a battery move in Figure 5.1.
At first we identify the time slot with highest peak: time slot t; = 8.
In t; there is a house with a battery that is buying the amount of
energy indicated with 3. We can instead buy such energy in an
earlier time slot £, storing it in the battery, and discharge the battery

48



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 49

Algorithm 5.1 Battery move, outer loops

BATTERY-MOVE(x,)
1 energy-profile* <— oo
2 pp < ENERGY-PROFILE(x))
3 fort; € HIGHEST-PEAKS
4 do > Compute houses which buy much energy in t;
5 interesting-houses <— {(h,¢) ...}

6 for (h, ¢) € interesting-houses
7 do if vfbb’td >0
8 then > House } is charging, can not discharge
9 Skip house h
10 > Compute how much energy is possible to discharge in ¢,
11 £y < min {é, g — vglb,td,'yrb“ax — VB, -1, n]irl‘t}
12 > Can discharge enough energy?
13 ifl; </
14 then Skip time slot ¢
15 if Uz,b,td + 44 < Gpnin
16 then Skip time slot ¢,
17 BATTERY-MOVE-INNER-LOOPS(Xy, t4, h, £, energy-profile*)

18 > Update solution with new profile and battery information
19 x < UPDATE(py, energy-profile*, .. .)

20 return x




5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

Algorithm 5.2 Battery move, inner loops

BATTERY-MOVE-INNER-LOOPS (py, t4, h, ¢, energy-profile*)

1
2
3
4
5

o)}

10

11

12
13
14
15
16

17
18
19
20
21
22
23
24

> Loop backward and try charging in all previous slots
fort. <+ t; — 1 downto 0
do > Is there enough storage?

return

if pBips, + 5 la > 1P
then Skip time slot t; > discharge slot, not ¢,

> Is battery already discharging?
ifof ,, >0
then Skip time slot .

> Compute how much energy is possible to charge in .

from-ideal <— max {0, dzﬁ‘erencetc}

¢, < min {,yinax — pByyyy, T — Uz,b,tc’ from-ideal, ﬂ;,'ft - yh,tc}

> Can charge enough energy?
ifop,, +Ll<h™

then Skip time slot ¢,
ifl. <y

then Skip time slot ¢,

> We can charge / in t. and discharge it in ¢
p + Cory(py)
ApD-LOAD(P, 4, t¢)
REMOVE-LOAD(P, /, t;)
if p < energy-profile*
then energy-profile* < p
> Save also best J;, ¢, t; and ¢,

50



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 51

in t;. The only feasible time slots for charging the battery are ¢! and 2
(note that they are visited backwards). We generate the two demand
curves for the two cases when we buy energy in t! or #2, and we pick
the best one, according to the given objective function (both solutions
have the same maximal peak, but for instance charging in 2 reduces
also the maximal difference).

5.2.4 MILP move

MILP move is very different from the moves described so far. The
idea is to solve a smaller mILP formulation obtained from the current
solution by fixing the value of some variables.

We fix the values of all the variables x;, , ; corresponding to activities
that do not influence the maximal peaks; if the set of free variables
is too big we fix other activities in order of increasing flexibility. We
solve the reduced mILP problem and generate the next solution.

We do not explicitly generate a neighbourhood for this move, we
let the mILP solver return the best neighbour it can find within the
time limit.

5.2.5 MILP-batteries move

MILP-batteries move is also based on a reduced MiLr problem. We fix
all activities in their current starting time slot, and we leave batteries
flows variables free. The MILP solver finds an improving batteries
scheduling within a time limit.

Note that this move is not supposed to be performed more than
once in a row. If the MiLP solver did not find the optimal solution

for the reduced problem it would make no sense to repeat the move:

indeed, it can not improve more. If it did not find the optimal solution
within the time limit, it would likely not find it if run with the same
parameters and inputs. This remark does not apply to the previous
MILP move, since at each iteration the maximal peaks change and thus
different activities get fixed.

Note that the only decisional variables left free are vﬁlb’t, vﬁ,b’t, wfl,b’t
and wﬁlb,t. Most of the integer variables become constants, so the
problem is much closer to a Linear Programming (Lr) problem and
thus much easier and faster to solve.

5.2.6  MILP-zeroes-fixing move

This is another move that is based on a reduced miLr problem. The
idea is similar to the one described in Section 4.4 on page 42, but
instead of solving the PLR we compute the xj,; variables from the
current solution’s starting time slots. We fix the value of a random

Some variables are
fixed and the
reduced problem is
solve with time limit

Reduced problem’s
only free variables
are battery ones



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

10

Figure 5.1: Battery move example
T

2 3 4 5 6 7 8 9

27

[ Energy bought from a house with batteries

Demand curve

Ideal demand curve
Energy charged to battery
Energy discharged from battery




5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 53

Current active move Next active move
Swap Shift / Battery / miLp-batteries
Battery Shift
MILP-batteries Shift
MILP-zeroes-fixing Shift

Table 5.1: Move switch in case of empty neighbourhood

subset of these variables to 0 (1ot the one corresponding to the actual
starting time slot), and we solve the reduced MILP with a time limit.

5.2.7 Large move

This move is a diversification move, i. e., its purpose is not to improve
the current solution, but to drift the exploration to a different region
of the solution space. We remove a randomly chosen subset of activit-
ies from the solution and we reschedule them using Grasr. By chan-
ging the size of this subset it is possible to control how much the next
solution should have in common with the previous one.

We generate only a single solution, which will be almost surely
worse than the latest ones, but hopefully it will belong to a region of
the solution space with a better local optimum.

5.2.8 Mixed move

We can use the moves described so far directly with 1s. The shift
move is actually quite effective in finding a good solution for in-
stances without batteries, and the other moves manage to sensibly
improve a solution. However they give the best results when they are
combined and the heuristic can choose the move depending on the
run-time state.

We defined mixed move as an abstraction, it wraps other moves
and controls which one is active, i. e., used at current Ts iteration. At
the end of iteration it is possible to change the active move.

Sometimes in an iteration we can not find any solutions in the cur-
rent neighbourhood, not even a worse one. For instance in a swap
move is hard to find a suitable pair of activities, and the neighbour-
hood is only randomly sampled and not exhaustively explored; in
battery move it may also happen that all useful time slots are filled.
When the active move produces an empty neighbourhood, we switch
to a different type of move, as we show in Table 5.1.

Solution is partially
destroyed and
rebuilt from scratch

Mixed move
combines different
types of move



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 54

Figure 5.2: Mixed move flow chart without batteries

After 8 iterations

start Shift

After 2 iterations

After 1 iteration
Large

Tabu Search control

After we complete an iteration we may replace the current active
move with another one. The policy that controls this behaviour is
slightly different whether batteries are available or not. In case of no
batteries the shift move is sometimes interrupted to try a couple swap
moves (Figure 5.2). The idea is that higher order moves — moves that
correspond to more than one shift move, as swap moves — might open
paths closed to shift moves.

When batteries are available the aim changes: we want to use bat-
teries to smooth the demand curve, so battery moves are performed
as long as possible. In a perfect world we would not even need a
single shift move, we would just charge batteries when the demand
curve is above ideal, and discharge when it is below. Of course this
world is imperfect, batteries have limited capacity and other con-
straints, besides, not all houses have batteries. Sooner or later it
would be impossible to perform further battery moves. When an
empty neighbourhood is found a short burst of shift and swap moves
is performed, hoping that they will be able to make room for other
battery moves (Figure 5.3).

When using MiLp-batteries moves, we do not perform them more
than once in a row, so after a single iteration the shift move becomes
the active move (Figure 5.4).

When using MILP-zeroes-fixing moves, we perform them only once
at the beginning of the execution. Although the solution does not im-
prove in a significant way when MiLP-zeroes-fixing moves are stacked,
the solution benefits of some refinement done with simple mixed
move (Figure 5.5 on the next page).

In all cases we perform a large move for a single iteration, and then
the shift move becomes the active move. Large moves almost destroy
the current solution with just a single iteration, two iterations in a
row might destroy it completely. Large move can only be promoted
to active move when a diversification is requested by the Ts algorithm
(e. g. when we could not improve the solution for a while).

Active move type
changes at runtime



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

Figure 5.3: Mixed move flow chart with Battery moves

After 8 iterations

start Shift Swap

After 2 iterations

After 1 iteration

Large

Forever

Battery

Figure 5.4: Mixed move flow chart with MILP-batteries moves

After 8 iterations

start W Swap

After 2 iterations

After 1 iteration fter 1 iteration

Large MILP-batteries

Figure 5.5: Mixed move flow chart with MILP-zeroes-fixing moves

start ‘(MILP—zeroes—fixing}

After 1 iteration

After 8 iterations

After 2 iterations

After 1 iteration Empty neighbourhood

Battery

Forever

55



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 56

5.2.9 Tabu Moves

When exploring the neighbourhood using the shift moves (Section
5.2.1) or the MILP moves (Section 5.2.4) we enabled the use of a Tabu
List (T). When we choose a shift move (%, a,toq, tnew ), We insert its
inverse Tabu Move (t™) (1, a,t44q) into the TL, i. e., we forbid moves
that shift activity (h, a) back to starting time slot ¢4.

When in the MILP move we choose a solution, we compute a se-
quence of shift moves from the initial solution to the new solution.
We then add the inverse of each of these shift moves to the TL.

We implemented T™s only for these types of moves, since they are
the only which are executed in long bursts. Battery moves, MILP-
zeroes-fixing moves. .. are usually the active move for only few itera-
tions, the corresponding TmMs would get outdated very soon.

5.2.10 Exceeding maximal local peak

For each house the Constraint (3.4) imposes a maximal local peak,
i. e., the retailer sets an upper bound to the energy available in one
time slot. Until now, during local search all solutions were required
to be feasible at each iteration, i. e., they had to satisfy all constraints.
However it might be possible that by taking more than one infeasible
steps the final solution is feasible and improved.

Let’s consider the following simplified instance: the day is divided
in 2 time slots and there are 3 activities, red =3, blue B8 and green
. Figures 5.6a and 5.6b show respectively the initial solution and
the optimal solution (the maximal local peak is shown as ---). Red
activity must start at the first time slot, so from the initial solution
there are only two shift moves: move green activity to first time slot,
shown in Figure 5.6d, and move blue activity to second time slot,
shown in Figure 5.6c.

The two possible moves from initial solution x, are (G, 1) and (B, 2),
but the solutions

X1 =x® (G, 1)
Xy = X D (B,Z)

are both infeasible, while the optimal solution

X =x®(G,1) @ (B,2)
=x® (B,2) @ (G,1)

can only be reached by applying the two moves in sequence.

We can imagine the optimal solution being beyond an infeasible
barrier of height 2: we can not go beyond the barrier travelling only
one move a time, therefore the optimal solution can never be reached.
A swap move handles this particular example, even if it means in-
creasing the neighbourhood size from O (hat) to O (h*a?), however

Strict feasibility
might prevent
reaching desirable
solutions



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM

Figure 5.6: Swapping two activities

8 8
7r * 7
6| - 6
5
4
3
2
1
0 1 ) 0
(a) Initial solution
8 8

1 2
(c) Shift blue activity to time slot 2 (d) Shift green activity to time slot 1

1 2
(b) Optimal solution

1 2

57



5.2 TABU SEARCH FOR THE RESIDENTIAL ENERGY LOAD MANAGEMENT PROBLEM 58

there might occur other cases where the barrier is of height 3 or
even higher. We could consider chains of moves instead of single
moves, but then the neighbourhood size would explode to O (hkak tk )
for chains of length k.

Infeasible exploration

A Dbetter approach is to relax the maximal local peak constraint for
few iterations. This way there are no barriers at all and we can freely
explore the solution space one move at time. To recover feasibility we
proceed as follows:

Let’s call 7i" the maximal local peak, and max; y;, ; the current local
peak. Then we have for each house a slack, i. e., the distance from the
feasibility,

s; = max <0, max yp,; — ni“) Vh € H

Sé Zsh.

heH

Then we define three phases in which the Ts can operate:

STRICT FEASIBILITY PHASE The current solution is feasible and we
discard all moves that generate infeasible solutions. The inter-
esting activities? are all activities that influence the maximal

peaks. All slacks are zero. ) e
In infeasibility phase

maximal local peak

INFEASIBILITY PHASE If a solution is infeasible it has strictly posit- " ;
1S 1gnore

ive slacks for the maximal local peak constraint (i. e. 3 (h,t) :
nin —Ynt = Spt > 0). The sum of those slacks gives a measure
of how much infeasible it is

Y sp = Solution’s infeasibility.
heH

We do not discard any solution, hence the next solution could
be infeasible. At the end of iteration we update the aggregate
values of slacks for each house s;,. The interesting activities are

again all activities that influence the maximal peaks. o
In loose feasibility

phase only solutions
with lesser slacks are
considered

LOOSE FEASIBILITY PHASE When we are is in this phase it means
that we have been exploring the infeasible region, but now we
are trying to recover feasibility. We discard all moves that gener-
ates solutions not less infeasible than the current one, i. e. with

Z sh Z Z Sgurrent solution,
heH heH

since they would not help in reducing the infeasibility. If the
next solution has all zero slacks then we recovered feasibility,

3 Interesting activities are the activities considered in shift moves. Activities that are
not interesting are ignored, so their starting time slot can not change.



5.3 LOCAL BRANCHING

and we switch to strict feasibility phase. We ignore T™s alto-
gether in this phase (they might prevent to recover feasibility).
In this phase the interesting activities are all and only activities
of infeasible houses (i. e., houses with positive slacks). Moves
involving already feasible houses would not reduce infeasibility
(slacks can not go below zero), so there is no use in considering
other than infeasible houses. Secondly, there is a chance that
no activity influencing the maximal peaks influences also an in-
feasible time slot, hence by taking only the latter we might end
up with an empty neighbourhood.

Not all kind of moves support infeasible exploration. MILP moves and
battery MILP moves support only strictly feasible exploration, while
battery moves only works in strictly feasible and infeasible phases.
Shift and swap moves supports all three phases. Large move works
also in all three phases.

5.2.11 Early stopping and diversification

Usually Ts stops either after a time limit or a maximal number of
iterations, but we developed an auxiliary algorithm that can detect
whether it might be a good choice to stop before that.

We keep a queue of last k - t solutions, where ¢ is the current TL
length and k is a parameter. If the best solution found so far did not
improve during the last k - t iterations*, we assume that the current
region of the solution space was sufficiently explored.

We can then stop and return the best solution found so far, or we
can try the diversification move defined in Section 5.2.7, which ran-
domly reschedules half of activities using GrAsp, clearing the last
solutions queue. In the following iterations we will explore a differ-
ent region in the solution space, and hopefully we will find a new
local minimum.

5.3 LOCAL BRANCHING

Fischetti and Lodi [2003] proposed a local branching technique to
solve large mMiLP problems, which tries to bring together the advant-
ages of both MiLP solvers and local search heuristics. Starting from
an initial guess its neighbourhood is explored and the result is used
as new guess for the next iteration. However the neighbourhoods are
defined using MILP constraints and are explored with the MILP solver.

At iteration k, the solution space is divided in two subsets: solu-
tions closer than mj; moves from the current solution x;, and solu-
tions further away than m; moves. The first subset is explored with

When using TLs we may hit the bottom of a local optimum, climbing up, and then
improving again. By using the best solution found so far this does not count as
improvement.

59



5.3 LOCAL BRANCHING

MILP solver with a time limit, and the best solution found is used as
the next solution x; ;. In the following iterations a new constraint is
imposed to exclude already explored regions of solution space.

5.3.1 Local branching for the Residential Energy Load Management Prob-
lem

We implemented the algorithm proposed by Fischetti and Lodi [2003]
without any relevant modification.

At first we need to define a function of distance between two solu-
tions. We say that two solutions X and x; are m steps distant if there
are m activities that start at different time slots in the two solutions,

i. e., their distance is>

_ )
A (Kj’£k> - Z Z (1 xh,a,Starting slot of (h,a) in gk> ’

heHacA

where “Starting slot of (,a) in x;” is the starting time slot of activity
(h,a) in the solution x,. Batteries are left free.

Given a solution x;, we divide the solution space in the two re-
gions: one closer to x; than m; steps and one farther. To instruct the
MILP solver to restrict on one of these two regions we add one of the
following constraints:

We solve the problem with these additional constraints within a
time limit, and we take different actions depending on the result:

AN OPTIMAL SOLUTION WAS FOUND We optimally solved this re-
gion of solution space. We register the best upper bound and
we exclude this region from following exploration by perman-
ently adding the constraint

A(x, x) > my + 1.

THE PROBLEM IS INFEASIBLE This region of solution space does
not contain feasible solutions®. We increase mj to explore a
large region. If a diversification is possible we also reset the
upper bound to co. We exclude this region from following ex-
ploration by permanently adding the constraint

A(x, x) > my+ 1.

Here x stands for the starting time slot variables discussed in Chapter 3, while x
(note the underline) represents instead a whole solution. We do not use again the
first x in the rest of local branching section.

This seldom means that there are no feasible solutions at all, but instead that those
solutions are all worse than the current upper bound.

60



5.3 LOCAL BRANCHING

A FEASIBLE SOLUTION WAS FOUND We cannot exclude the current
region from following exploration, since it could still contains
better solutions, so we limit ourselves to excluding the current
solution by permanently adding the constraint

A(xx) > 1.

We then use the newly found solution x;, | for the next iteration,
i. e.,, we divide the solution space in two regions, one close to
X1 and one far from x;_ ;.

NO SOLUTION WAS FOUND If a diversification is possible we replace
the last closeness constraint with a trivial one to exclude the cur-
rent solution; then we reset the upper bound to co and we en-
large the current region by increasing m.

Otherwise we reduce the region’s size, by decreasing my.

Finally, we solve a last MILP problem excluding all found solutions, all
optimally solved regions and all proven infeasible regions. If we can
optimally solve this last sub-problem, or if it can be proven infeasible,
a global optimum was found. Otherwise we simply return the best
solution we found.

We show a state chart of local branching iteration in Figure 5.7. The
input is the current solution, and the output is the next solution.

Refining

When we find a feasible solution it may happen that a slightly better
one was hidden by the additional constraints, but it is still feasible for
the original problem. We perform a few iterations with Ts using the
simple shift moves described in Section 5.2.1 to avoid such risk.

61



62

5.3 LOCAL BRANCHING

T 93xeTus pue
A < (IXx)y

Yo
X JUTRIISUOD yiMm zoﬁmhoﬁxm aminjy qIsesJul UsAOL
woJJ ﬁooﬂnﬁoﬁﬁﬂwﬂwﬁ m\«w opPNPXH punoj suornjos oN
1Z(FRY [ ws (T
T+¥y JUTRIISUOD UM :oﬂﬁoax@ JUTRIISUOD JITM — Ay
Yo Y spqisesy punoyg Yo
woy 1x apnoxy pooymoqy3iau s, ¥x arordxyg
T 931eTUD pUR
< (XX
Iy < A VQ 0% winwndo punog

jurensuod Ypm uorjerordxs aming
woxj pooyInoqyudiu s, x sapnpxyg

}reyd 9)e)s uorera)r umnypuelrq [edo 4G andny



COMPUTATIONAL RESULTS

In this chapter we report and discuss the results obtained with the
methods we developed. At first we describe the data set and show
the reference results, then we report results for different kind of ob-
jective functions. We report results obtained with Grasr using differ-
ent filtering criteria, enabling infeasible generation and enabling bat-
tery usage. We report results obtained with Ts, for few variants and
parameters: using shift moves, mixed moves, solving a reduced miLp,
enabling diversification and infeasible exploration. We report results
obtained with rLR with reduced miLr and local branching methods.
In the end we compare the different methods and remark their ad-
vantages and disadvantages.

CONTENTS
6.1 Objective functions 66
6.1.1  p-norms 66
6.2 GRASP 70
6.2.1  Filtering criteria 70
6.2.2  Infeasible generation 72
6.2.3  Batteries usage in GRASP 73

6.3 Tabu Search 74
6.3.1  Tabu Search with shift moves 74
6.3.2  Tabu Search with MiLP moves 76
6.3.3 Tabu Search with mixed moves 76
6.3.4 Tabu Search with MILP-zeroes-fixing move and mixed
moves 77
6.3.5 Tabu Moves 78
6.3.6  Early stop and diversification 78
6.3.7 Infeasible exploration 8o
6.4 Partial Linear Relaxation and reduced miLP 8o
6.5 Local branching 82
6.6 Comparison 84
6.7 Multi-threading 87

Data set

For tests we used a fixed set of instances, shown in Table 6.1. There
are three groups with 20, 200 and 400 houses. Each house has a fixed
set of 11 appliances. In each group there are 10 different instances,
where appliances load profiles and execution windows vary. For each
instance there are variants with all combinations of o - 10% batteries
and o - 10% - 20% PV panels. In total there are 60 different instances
with 20 houses, 60 with 200 houses and 60 with 400 houses. Appli-
ances load profiles and execution windows are realistic, but not real,

63



COMPUTATIONAL RESULTS

Houses Batteries pv panels Instances

20 0,2 0,2,4 1to 10
200 0, 20 0, 20, 40 1to 10
400 0, 40 0, 40, 80 1 to 10

Table 6.1: Data set

and were computed using information collected during a previous
project [Carpentieri, 2012].

As we shall see performances over different kind of instances are
heterogeneous, thus the aggregate over the whole data set is very
imprecise. The two aspects that most influence this are batteries and
number of houses.

Batteries make the problem much harder. For instance an heuristic
might be able to solve a instance without batteries up to 2% gap from
optimum, but it might be able to reach only 8% gap from optimum
if we add even one single battery. This is also true when using the
CPLEX solver, as batteries add more variables.

Instances with different number of houses are also difficult to com-
pare. A single move actually affects a constant amount of energy
over the whole energy profile, while the energy profile’s total energy
is of course directly tied with number of houses. It takes therefore
more iterations to improve larger instances. On the other hand this
means that steps are smaller in larger instances, so the solution is
finer grained, and it is possible to reach better results in the long run
by closely approaching the ideal solution.

For these reasons in the following we will make separate plots
and tables for instances with and without batteries and for different
houses number. Pv panels presence does not seem to influence much
the results, so we will aggregate the results over them.

Reference results

In Table 6.2 we show the results obtained with a MILP solver by min-
imizing the maximal peak of the demand curve. We used IBM ILOG
CPLEX 12.4.0.0 and IBM ILOG AMPL 11.010 on a Intel(R) Xeon(R)
3.30GHz with 16 GiB RAM. Note that CPLEX were also the solver we
used to solve reduced MILP problems in our heuristics. Note that the
computing times are always expressed in seconds, unless stated dif-
ferently. These results were obtained by forcing CPLEX to use a single
thread, so we did the same in all our tests, for both CPLEX and the
heuristics, with the notable exception of the test in Section 6.7 on
page 87.

CPLEX could not find the global optimum, but it produced a feas-
ible solution and a lower bound. We computed the gap between that

64



COMPUTATIONAL RESULTS

Batteries 20 houses 200 houses 400 houses
Gap Time Gap Time Gap Time

No 3.45% 3599.76 0.42% 5397.3 0.23% 10311.19
Yes 3.26% 3599.76 1.09% 5316.78 0.84% 10780.0

Table 6.2: Reference solutions

Figure 6.1: Box plot notation

Maximum o

91st percentile

3rd quartile —

Median

1st quartile

—L—- gth percentile

Minimum o

solution and that lower bound. Except for small instances, the solu-
tion found was within 1% from the real optimum.

Box plot notation

We run many tests on the entire dataset, or a part of it, so the res-
ult is not a single value but actually a distribution of values. To
compare distributions for different methods sometimes we used box
plots, with the following notation:

The middle line is the median, the box itself is delimited by the
first and third quartile, the two whiskers correspond the gth and g1st
percentiles, and the two dots correspond to the maximal and minimal
sample in the collection. We show an example in Figure 6.1.

Gap from optimum

In order to compare the heuristic to the reference results we will show
plots of the relative gap from optimum of a solution, which measures

65



6.1 OBJECTIVE FUNCTIONS

the relative distance between a solution x and the reference “optimal”
one x*. It is defined as

_ e = 12"l

T el

i. e., as the difference between the maximal peak of x and the maximal
peak of x*, divided by the maximal peak of x*. Note that x* is not the
true optimum, but only the best solution found by the CPLEX solver
after a long execution. It is therefore possible — although uncommon
— to reach a negative gap.

6.1 OBJECTIVE FUNCTIONS

In this section we report results for different objective functions and
different parameters.

We used different objective functions to generate 200 solutions with
GRASP to investigate which one gives best results. In Figure 6.2 we
show the distribution of maximal aggregate peak only for 200 houses
instances, however the results show the same qualitative behaviour
for other subsets of data set, and for solutions obtained from Ts. The
objective functions corresponding to the ids are listed in Table 6.3.

The “maximal difference” objective function has extremely bad per-
formance. Very little activities can start at the first time slots of the
day, due to execution window constraints. Hence the aggregate peak
during these time slots is always very small, i. e., very far from ideal,
regardless of how close to the ideal the demand curve is in the fol-
lowing time slots (recall Figure 4.2 on page 37). The distributions
are plotted a second time without this objective function, in order to
better appreciate the differences among the other functions.

The “maximal peak” function gives also bad results compared to
the others. The two functions that use both the maximal difference
and the p-norm perform better, but the best results are obtained with
the last function, that uses all three parameters: maximal peak, max-
imal difference and p-norm. It seems that, as discussed in Section 4.3
on page 35, the best results are obtained when we could distinguish
most among similar solutions.

All the following results in this chapter were obtained using the
last objective function, except where stated differently.

6.1.1 p-norms

In Figure 6.3 we show the results for different values of p when using
the best objective function just shown in Ts with shift moves for in-
stances without batteries. The best value for p is 2, but the difference
is rather small for other values.

66



Solution’s maximal peak

Solution’s maximal peak

6.1 OBJECTIVE FUNCTIONS

Figure 6.2: Graspr with different objective functions, 200 houses

105 All objective functions

18| | |

1.7 |- A

16|

15|

HIH

14| .
1.3 .

1.2+ -

11| i == == |

1 2 3 4 5
Objective function’s ID

.16sll objective functions except maximal peak difference

T T
118 . .
116 | T ]
114 |

1

112 . . . .
== |

[ ]

[ ] [ ]

1.08 | % .
1.06 | R .

| | | |

1 3 4 5

Objective function’s ID

67



6.1 OBJECTIVE FUNCTIONS

Figure 6.3: p-norms

20 houses
15% [ | |
[ ]
s :
[ ]
£ 10%
& |
1S
g
S
- 5 O/o [ ‘
% P —
© L L P
° [ ]
0 O/O L | | | |
1 2 3 4
200 houses
T T T
[ ]
3%
z .
g * * —
‘.g" 29 | ‘I— I
g
é P——
a, L
S 1% :
[ ] [ ]
| | | |
1 2 3 4
400 houses
T T
[ ]
[ ]
E 3% s
&
-5-4 P
S
é 2% |- .
o,
1% |-
[ ]
| | | |
1 2 3 4

68



6.1 OBJECTIVE FUNCTIONS 69

Id Objective function

1 Maximal aggregate peak

2 Maximal difference from ideal

3 Maximal difference and p-norm

4 Maximal difference plus p-norm

5 Maximal aggregate peak plus maximal difference plus p-norm

Table 6.3: Objective functions ids



6.2 GRASP

Criteria 20 houses 200 houses 400 houses

Gap Time Gap Time Gap Time

Best 5 35.03% 3.4 21.60% 62.9 20.39% 208.83
Best 10 48.54% 3.5 33.65% 64.9 32.23% 204.93
Best 15 60.15% 3.7 45.15% 63.03 43.74% 206.07
Closest 0.8  28.15% 2.93 20.66% 59.33 20.85% 213.27
Closest 0.9 25.11% 2.93  17.46% 59.47 17.69% 202.67
Closest 0.95 23.40% 2.9 15.59% 60.2  15.83% 222.2
Closest 0.99 21.70% 2.83 13.89% 63.17 13.77% 209.3
Greedy 21.05% 2.7 13.63% 52.87 13.36% 194.0

Table 6.4: GrasP filtering criteria

6.2 GRASP

In this section we report the results for Grasp, for different filtering
criteria and parameters.

6.2.1 Filtering criteria

As explained in Section 4.2.1 on page 29, GRAsP filters the best can-
didates at each iteration according to some criterion. In Table 6.4 we
show the results when using different criteria and different paramet-
ers. For each case we generated 1000 solutions. We also show a box
plot of the results for instances with 200 houses and no batteries in
Figure 6.4, to better display the differences among different paramet-
ers. The distributions are plotted a second time without the “take
best N” criterion, in order to better appreciate the differences among
the other criteria.

The “take best N” criterion gives very bad results. The generated
solution’s average gap from optimum appears to increase linearly
with N, and even with low values of N it is much worse than other
criteria. The “take closest a” criterion gives much better results, and
it also shows an increasing behaviour with decreasing the parameter
«. This criterion with & = 1 seems to be the most effective one.

Taking a fixed number of candidates has probably the worst effects
in iterations where there is a small starting number of candidates, i. e.,
if there are 7 feasible starting time slot for an appliance then taking
the best 5 may take low quality candidates. On the other hand, in
iterations where there is a large number of candidates many of them
might have similar values, so it is best to use a restrictive criterion to
only take the best one, i. e., use a high value for «.

70



6.2 GRASP

Figure 6.4: Grasp filtering criteria, 200 houses without batteries

All filtering criteria

T T
[ ]
60% | 5
=
5
-
S 40% |
: ==
& °
[ ]
Q. [ ]
AP — == .
U ® i T [ 11 ]
[ ] ° ® +
| | | | | | | |
0 %
o C)\o o © ok 19 IR 9 &0 P &0 P ‘ee&
A0 Ac® C\o%e C\o%e £2

All filtering criteria except take best N

T T
[ ]
25% |- .
5 °
g .
o o o
§ 20 /o [ % ° 1
E %
£ 15% e .
3
© 10% | ¢ L L
o ° °
[ ]
(O° £ 09 o 09 e
S S X ok

71



6.2 GRASP

20 houses 200 houses 400 houses
Gap Time Gap Time Gap  Time

Feasible 23.30% o0.57 1551% 7.8 15.69% 21.4
Infeasible 22.34% o0.57 13.28% 7.97 13.82% 21.0

Table 6.5: Feasible and infeasible GrAsP

Figure 6.5: Feasible and infeasible GrasP
T T T T T

40% |- ° 2
§
£
2 30% - T |
s . .
“‘;:'. 20 0/0 [ o ) m
Q.
O ==l == N ==
10% o ° . ® °
! ! ! ! ! !
S AR S AN S AN
O\)%e e’O»%QO\ o\}%e e,bggo\ O\}«%e eﬁe&\
N A e A N A
20 SS o o o RS
\)%e% v o S X %e9
Q Q (8)
r)/OX\ rLOOX\ D(OOX\

Note that batteries are ignored in GrAsP, so the results in instances
with batteries are much worse than in instances without batteries.
In facts the generated solutions should be identical (up to randomly
generated numbers, see Section A.3 on page 102), while the reference
solution has a lower maximal peak.

Even with the most effective criteria the average gap is quite high,
about 13% for large instances and up to 21% for small ones, hence
the generated solutions need always be improved with Ts.

6.2.2 Infeasible generation

In Table 6.5 and Figure 6.5 we compare the results obtained using

GrASP when the local maximal peak constraint is or is not relaxed.

Solutions are slightly better in the former case, the difference around
1%, and the computing time is roughly the same. Solutions are likely
to be infeasible, but if we enable infeasible exploration in Ts, it will
start from a better solution. However, in the end it will have to recover
feasibility. For each case we generated 100 solutions.

72



6.2 GRASP 73

20 houses 200 houses 400 houses
Gap Time Gap Time Gap Time

Using batteries  39.74% 10.27 29.94% 127.1 29.33% 311.27
Ignoring batteries 34.70%  2.67 26.48%  45.4 26.80% 141.17

Table 6.6: Batteries usage in GRASP

6.2.3 Batteries usage in GRASP

It is possible to instruct GRASP to use batteries when constructing
a solution. We compared the results for instances with batteries in
Table 6.6. The results are slightly worse than if we ignore batteries,
moreover the computing time is significantly longer. It is then a better
choice to ignore batteries in GrasP altogether and let the local search
phase make use of them.



6.3 TABU SEARCH

6.3 TABU SEARCH

In this section we report the results for s, for different kind of moves
and parameters.

TS is an iterative algorithm, the solution’s value changes at each
iteration. It is then possible to plot the solution’s value with respect
to the iteration number (or the computing time) to represent how the
algorithm is improving the solution. Aggregating these information
from many executions is however not trivial, since each one would
have a different trend. When representing multiple executions we
plotted the average solution’s value (or gap from optimum) from each
execution, along with its standard deviation as error bars.

It might also happen that not all executions from the same batch
last the same number of iterations. For instance an execution might
reach its optimal value in less than the maximal iterations. Or it
reaches earlier the maximal diversifications limit. For this reason the
mean and standard deviation at higher iterations might be computed
over a smaller set than the ones at lower iterations, and thus be less
generalizable to the average case. This is often clear when the last
point in progresses plots does not fit with the previous ones, or when
it has a large standard deviation. When comparing final perform-
ances using box plots we use the value at the final iteration for every
execution, so this is independent on how many iterations took to
reach the optimal value.

6.3.1  Tabu Search with shift moves

In Table 6.7 we show the results when using 1s with shift moves. We
generated 10 solutions with GrAsr and we improved the best one with
TS. TS stopped when it could not further improve the solution. The
computing time includes the time to generate the initial solutions.

In Figure 6.6 we show the average trend for instances with 400
houses and no batteries. The qualitative behaviour is the same for
other subsets of the data set. Early iterations result in large improve-
ments; when instead the solution approaches the optimum the im-
provement slows down.

There is a significant difference for instances with a small number
of houses and instances with a large number of houses. As we men-
tioned, in large instances there are many appliances to move, and
their load profile is a tiny fraction of the total aggregate energy. It
is therefore easier to fit them in time slots with a small (with respect
to the total energy) residual capacity. For the same reason, comput-
ing time does not increase linearly with the number of houses, since
for large instances more iterations are necessary to reach the optimal
solution. Solutions for large instances are within 2% from reference
solutions. Computing times is in average less than 8o seconds.

74



6.3 TABU SEARCH

Batteries 20 houses 200 houses 400 houses
Gap Time Gap Time Gap  Time

No 5.33% 0.8 1.64% 24.3 1.54% 78.07
Yes 14.72% 0.87  11.33% 24.57 11.31% 79.03

Table 6.7: Ts with shift moves

Figure 6.6: Ts with shift moves, 400 houses without batteries

Gap over elapsed time

16 % - :

14% - 2

12% |- a

10 % |- a

8% - :

6% |- :

Gap from optimum

4% |

2% :

0(707 L L L L L L L L L
20 30 40 50 60 70 80 90 100

Time [s]

Small instances are instead coarser grained. There are less appli-
ances to move, and their load profile is much more significant with
respect to the total energy. It is harder to fit them in time slots with
a small (with respect to the total energy) residual capacity, since the
total energy is much lower. Computing time is extremely short, about
1 second.

Ts with shift moves ignores batteries. However we made an at-
tempt to post-allocate them, i. e., after the Ts stopped we charged all
batteries in time slots where the demand curve was below the ideal
curve and discharged them in the other time slots. This procedure is
extremely fast and very simple, it was the first attempt we made to
use batteries, but it did not succeed (solutions are farther than 10%
from the reference ones), so we investigated the other mentioned al-
gorithms (battery moves, PLR...).

75



6.3 TABU SEARCH 76
Batteries 20 houses 200 houses 400 houses
Gap Time Gap Time Gap Time
No 13.35% 15.03 13.70% 24.47 14.55%  43.83
Yes 26.11% 15.57 24.90% 48.63 25.68% 108.77
Table 6.8: Ts with MILP moves
Batteries Move 20 houses 200 houses 400 houses
Gap Time Gap Time Gap Time
No 5.23% 0.87 1.58% 26.2 1.45%  89.73
Yes Battery 13.93% 0.87 6.09% 34.93 5.76% 1222
MILP-batteries 12.57% 2.17 10.58% 43.3 12.70%  83.47

Table 6.9: Ts with mixed moves

6.3.2 Tabu Search with MILP moves

In Table 6.8 we show the results when using Ts with MILP moves.
This heuristic was our first attempt to improve a solution by solving
a reduced miILp. In facts it produces solutions with the same quality
as GRASP, over 13% from the reference, but in much longer time.

6.3.3 Tabu Search with mixed moves

In Table 6.9 we show the results when using 1s with mixed moves. We
run the tests with the same parameters of the Ts with shift moves, but
this time battery usage is embedded in the local search, as explained
in Section 5.2.8 on page 53, using either battery moves (Section 5.2.3
on page 47) or MILP-batteries moves (Section 5.2.5 on page 51).

The results are comparable with the ones obtained using 1s with
shift moves move in instances without batteries (in facts the only dif-
ference is a couple swap moves once in a while). When batteries are
available the computing times is higher, but the gap from optimum
is much lower: using shift moves it was not possible to reach a high
quality solution, so Ts stopped earlier. For large instances this method
reached a gap of 6% from the reference solutions, for small instances
instead it produced solutions with much worse quality, over 13%. In
small instances only 2 houses out of 20 have batteries, it is hard for
this method to exploit such little capacity.

MILP-batteries moves produced instead low quality solutions, over
10% from the reference. In the following, when we refer to “mixed
moves”, we mean mixed moves with battery moves, not MiLp-batteries
moves.



6.3 TABU SEARCH

Figure 6.7: Ts with MILP-zeroes-fixing move and mixed moves, typical local
search progress

Gap over iteration Gap over elapsed time
£ ‘ \ \
E
g 20% | 20% |- |
o
g 10% |- . 10% |- :
¥
CBS | |
0 10 20 30 0 200 400
Iteration Time [s]
Batteries 20 houses 200 houses 400 houses

Gap Time Gap Time Gap Time

No 1.67% 31.23 0.63% 4087 1.15% 628
Yes 2.39% 31.53 2.40% 79.7 278% 177.43

Table 6.10: Ts with MILP-zeroes-fixing move and mixed moves

6.3.4 Tabu Search with MILP-zeroes-fixing move and mixed moves

In Figure 6.7 we show the typical solution’s value trend when using
TS with mMILP-zeroes-fixing move (Section 5.2.6 on page 51) followed
by mixed moves. The reduced MILP is solved once at the first iteration
of Ts, then shift and battery moves refine the obtained solution. The
improvement due to the reduced MiLP move is huge, however it does
not come without cost: solving the reduced mILP problem is not done
iteratively, so the gap from optimum stays constant for a long time,
until the new solution is found. Moreover, memory usage increases
significantly when using CPLEX.

In Table 6.10 we show the results for this method. We generated
10 solutions with Grasr and we improved the best one with Ts with
MILP-zeroes-fixing move and mixed moves. Ts stopped when it could
not further improve the solution.

Results are slightly worse for instances with batteries, but com-
pared to the other algorithms the difference is much smaller (and
values are in general better). Note that the 1s refines the solution ob-
tained solving the reduced miLp, which has already good quality. For
every subset of data set this method produced solutions within 3%
from the reference solutions. Computing time is longer compared to
battery moves, but still less than 3 minutes for the largest instances.

77



6.3 TABU SEARCH

Action k 20 houses 200 houses 400 houses

Gap Time Gap Time Gap  Time

3 5.82% o038 1.75%  25.43 1.81%  91.13
Stop 5 539% 0.87 1.71% 28.9 1.80% 93.1
7 516% 1.03 1.70% 324 1.77% 103.7
3 3.50% 2.97 1.34% 133.8 1.37% 524.3
Diversify 5 2.83% 3.5 1.31% 1309 1.35% 516.27
7 3.37% 3.63 1.33% 133.63 1.35% 509.3
Continue o0 3.80% 3.47 1.52% 12857 1.51% 487.43

Table 6.11: Early stop and diversification in Ts

6.3.5 Tabu Moves

In Figure 6.8 we show the typical progress of solution’s value in Ts for
a couple instances with 20 and 200 houses. The qualitative behaviour
is the same for other subsets of the data set. Solution’s value is almost
always decreasing, especially for large instances. The heuristic does
not fall into and escape from many local minima, so the Ts actually
behaves more like the steepest descent algorithm, at least until the
latest iterations.

Since at each iteration the neighbourhood is quite large — each activ-
ity can be shifted to any feasible time slot — there are not many local
minima when the solution is far from the optimum, there is often a
large number of improving moves, so the Tabu List (TL) can not for-
bid all of them. This is no longer true in the latest iterations, where
in facts we observe some oscillation.

6.3.6  Early stop and diversification

When 15 could not manage to improve the current solutions in the
past k - t iterations, where f is the current TL size, and k is a parameter,
it can either stop, diversify or continue until it reaches the maximal
iterations limit (Section 5.2.11 on page 59). In Table 6.11 we show
the results when using different values of k and when diversifying or
stopping.

There is no significant difference whether the heuristic stops as
soon as no improvements are possible, instead of continuing or di-
versifying, while the computing time is much shorter, about 5 times
lower.

78



Solution’s value

[\J
\O
T

Solution’s value

-104

Figure 6.8: Tabu List usage

6.3 TABU SEARCH

3.2

©
—_
T

@
T

2.8

=
N

2.75

2.7

2.65

2.6

2.55

(el

-105

20

40 60 80
Iteration

100

120 140

=

-

100

200 300 400
Tteration

500

600

700

79



6.4 PARTIAL LINEAR RELAXATION AND REDUCED MILP

Feasibility =~ 20 houses 200 houses 400 houses

Gap Time Gap Time Gap  Time

Feasible 5.39% 0.87 1.71% 28.9 1.80% 93.13
Infeasible 6.35% 0.83 1.36% 37.23 1.35% 127.8

Table 6.12: Infeasible exploration in Ts

6.3.7 Infeasible exploration

In Table 6.12 we show the results when enabling the exploration of the
infeasible region. In that case we show both the best feasible gap and
the best infeasible gap. We generated 10 solutions with Grasr and
we improved the best one with 1s with mixed moves. Ts diversified
when it could not further improve the solution, for up to 5 times. The
computing time includes the time to generate the initial solutions.

Except for small instances, we achieved slightly better results but
in longer time, about 1.3 times higher. While in feasible exploration
as soon as a local minimum is reached Ts can stop and return the
solution, in infeasible exploration it must first bring it back to the
feasible region, and then to find a feasible local minimum.

In the same plot we can see how a diversification can result in a
lower local minimum.

In Figure 6.9 we show the solution’s value’s progress against itera-
tion when enabling infeasible exploration. GRAsP generated an infeas-
ible solution, so the local search starts in the infeasible phase. The
solution is improved until no improvements occurred in the latest it-
erations (small fluctuations are due to Tabu Moves (Tms)). At this
point the solution is in a local minimum, however it is not feasible,
so the heuristic enters in the loosely feasible phase in order to drift
the solution toward the feasible region. This is done by reducing the
slacks until the solution is strictly feasible. At this point the heuristic
enters in the strictly feasible phase: the solution is improved again
until it reaches another local minimum, this time a feasible one.

At the end the heuristic either stops the local search or performs a
diversification move. In the latter case the heuristic enters again in the
infeasible phase, and the procedure starts over from the beginning.

6.4 PARTIAL LINEAR RELAXATION AND REDUCED MILP

In Table 6.13 we show the results for the PLR and reduced miLpr
method, described in Section 4.4 on page 42. We first computed the
Partial Linear Relaxation with a time limit, then we fixed approxim-
atively 60% of variables already at 0, then we solved the resulting
reduced mILP with a time limit. The solutions generated, called initial

8o



Solution’s value

Solution’s value

6.4 PARTIAL LINEAR RELAXATION AND REDUCED MILP

Figure 6.9: Infeasible exploration in Ts, details

104 A whole execution
T T T T I I I
2.55 | —— Solution’s value ||
B Loose feasibility
5l ® Strict feasibility | |
: ® * Diversification
245 8
®
24 a
235 8
23+ 8
| | | | | | | |
0 100 200 300 400 500 600 700 800
Iteration
10 The first cycle in details
T T
261 Solution becomes |
strictly feasible
251 8
24 a
231 . 1
No improvements, ~ No improvements,
imposing loose diversifying
I feas‘lblhty | | | |
0 50 100 150 200

Iteration

81



6.5 LOCAL BRANCHING 82

Batteries 20 houses 200 houses 400 houses

Gap Time Gap Time Gap  Time

Initial 0.86% 31.0 0.19% 76.13 0.12% 188.67
Improved -0.07% 61.0 0.00% 138.14 0.03% 342.93

Yes Initial 1.76% 311  2.73%  88.63 3.27% 227.1

Improved 1.62% 60.3 2.29% 14756 2.10% 384.36

Table 6.13: PLR and reduced MILP

Batteries 20 houses 200 houses 400 houses

No 1ooutof 10 goutof 10 g outof 10

Yes 1ooutof 10 7outof 10 5outof 10

Table 6.14: PLR and reduced MILP, instances solved

in the table, were then improved using 1s with mixed moves, for the
same time limit. The time limit was set to 30, 60 and 150 seconds for
instances with 20, 200 and 400 houses.

The initial solutions are very good, for instances without batteries
the gap from reference is almost nil, while for instances with batteries
is within 4%. We even manage to slightly improve them with Ts.
However this method could not manage to solve all the instances, as
we show in Table 6.14. Sometimes the time limit was too short to
even produce a feasible solution.

For small instances the PLR is almost instantaneous, so the total
computing time depends only on the reduced miLr and the local
search. We see a similar effect for larger instances without batteries,
the PLR is solved before the time limit. Sometimes, especially when
no batteries are available, the reduced miLP is also solved before the
time limit.

65 LOCAL BRANCHING

In Table 6.15 we show the results for local branching. We generated
10 solutions with Grasp and we improved the best one with local
branching. Local branching could actually generate itself an initial
solution, however it usually takes very long time, so we supplied
one from Grasr. We imposed a time limit on each local branching
iteration of 30, 60 and 150 seconds for instances with 20, 200 and 400
houses.

For small instances local branching produced high quality solu-
tions, within 2% from the reference, but in long time. For large in-
stances, especially when batteries are available, it produced low qual-



6.5 LOCAL BRANCHING

Batteries 20 houses 200 houses 400 houses

Gap Time Gap Time Gap Time

No 0.61% 92.53 0.41% 79.3 4.47% 17723
Yes 1.69% 92.87 5.81% 1444.24 13.04% 2627.4

Table 6.15: Local branching

ity solutions, up to 13% from reference, and the computing time grew
to impracticable values.

83



6.6 COMPARISON

6.6 COMPARISON

We run tests over the various methods in order to see which method
computed the best solutions in a given time. We tried to set the time
limit to a value meaningful for all the algorithms, but this was not
possible. Some algorithms reached a local optimum in really short
time. Some other algorithms, namely the ones that solved a reduced
MILP problem, need enough time to generate at least a feasible solu-
tion. For these reasons the computing time were not the same for
different methods, however we tried to impose comparable times for
instances of the same size. In Figure 6.10 we show the average gap
from optimum, and in Figure 6.11 we show the average computing
time.

Ts with shift moves produces good solutions when no batteries are
available, within 2% from the reference for large instances. When
instead batteries are available this method is not able to make use of
them; in facts it generates almost the same solutions whether batteries
are available or not, but of course in the former case the optimal is
much lower. Solutions are also slightly worse for small instances,
however the computing time is very short, about 1 second in average.
Even for large instances it has the lower computing time, less than go
seconds.

We can make the same observations for Ts with mixed move when
no batteries are available (mixed moves consist mostly of shift moves
and battery moves). This method produced better solutions for in-
stances with batteries, within 6% from reference, but not for small
instances. Larger instances with batteries are still not very close to
the reference, but the gap is smaller than when using shift moves.

Solutions obtained with s with MILP-zeroes-fixing move and mixed
moves are the closest to the reference for the Ts variants; even in in-
stances with batteries the gap from reference is very small, less than
3%. This method took a slightly longer time to finish, but it is prob-
ably the best choice to solve the Residential Energy Load Manage-
ment Problem. One drawback is that solving a reduced miLr with
the CPLEX solver may require a larger amount of memory, and for
instances much larger than the ones considered it might even be im-
possible.

PLR and reduced miLp, followed or not by Ts, gave the best solu-
tions, the gap from reference is almost zero for instances without
batteries, and below 3% otherwise. However this method took signi-
ficantly longer than the others, up to 5 minutes, and in addition to
that it could not even produce a feasible solution for some instances,
especially when batteries were available. Moreover it suffers too from
the drawback of solving a reduced miLp.

We excluded from the comparison the other methods that gave bad
results or had longer computing time.

84



85

6.6 COMPARISON

soLIv}3Rq SIsSNOY 00l mmmsO: ook  sarrepeq sasnoy ooe mmmsos 00T SaLId}je( SISNOY 0T mmmsos oc
L L L _____
[ I
o/O .[ 0 S
/ooc 5 [ Q @ S
oN o® /o [ [ N |
) & ﬁ 9 N NN A o° 9
S el SIS gl IR & <3
0y o oS S Nso DN e & o® |
N o NS WS 3O
Na® N
% —
L oo
N o oy &
N - W W
3 § <8
Q O/O m
~ ~ |
~ ~
& &
o® SN L o
&
SL YJIM ‘dTIN Padnpal pue ad g o R
ITIN PdNPII PUe A1 g SN i

SOAOW POXTW PUB SAOUW SUIXY-S20I9Z-dTIN Y3IM SL[][]

SOAOW PAXTW YHM SL[]
SoAOWL PIYS YIIM SL[]

wnumdo woiy ded “vostredwo) :01°9 am3ry

% 0

% C

% ¥

%9

% 8

% 01

% C1

% V1

% 91

% 81

% 0¢

wnuwndo woiy den



86

6.6 COMPARISON

S9LI9)3eq SISNoY ooV
|

sasnoy oot
|

S9LI9))eq SISNOY 00T  SISNOY 00T  SILIdeq SISNOY 0T sasnoy oz

)5',;88

| | |
ED SO NS
o &
m,c.mr% L W W
& A
2

N
N &

['gg[

SL UJIM ‘dTIN Paonpal pue A1d g

dTIN PdNPAI PUe ATd g

SOAOWL PIXTW PUR SAOW SUIXY-SI0IDZ-dTIN YIM SL[[]
SOAOUL PIXIW 3IM SL[]

SOAOW JIYS YIIM S|

awrn 3unndwod ‘vostredwo)) :11°9 N3]

09

001

0st

00¢

0s¢

00¢

0s€

00¥

0sy

[s] owm pasderg



6.7 MULTI-THREADING

Figure 6.12: Computing times when using multi-threading

GRASP computing time TS computing time
T T T T
) @, 910 |- R
9 v
E 26| 1 E
gl o
] o 29 N
72] n
S 2 g
= M
| L1 | | | | L1
1 2 3 456 1 2 3 456
Threads Threads

67 MULTI-THREADING

In Figure 6.12 we show our program’s computing time with respect
to the number of threads running simultaneously. We generated 240
initial solutions with GrasP and improved the 24 best with 2048 iter-
ations of Ts. We run this test on a 4 cPu machine. Note that in these
plots both axis have logarithmic scale. The computing time decreases
approximately linearly over the number of working threads, as long
as they correspond to physical crus. We make some remarks about

multi-threading in Section A.3 on page 102.

87



CONCLUDING REMARKS

In this chapter we summarize the main contributions of the thesis
and we mention a few directions for future work.

When we started working on the thesis the original miLr model
was very inefficient, computing time was very high even for small
instances with 10 houses and 11 appliances. For large instances with
more than 100 houses it would not provide a feasible solution even
after 1 hour of computing time. The model have been improved in
parallel to this thesis. The two changes that we discussed in Sec-
tion 3.2 on page 25 and in Section 3.3 on page 27 led to a much more
compact model, which can be solved considerably faster. In some
way this decreased the need for an heuristic, but on the other hand
it allowed us to easily embed reduced miLrs in the heuristic, which
actually led to better results.

We started by developing a Greedy Randomized Adaptive Search
Procedure (Grasp) in order to generating initial feasible solutions
(Section 4.2.1 on page 29). Such method turns out to be very fast
but tends to generate low quality solutions.

In order to evaluate solutions quality we defined an energy profile
(Section 4.2.2 on page 29) and procedures to incrementally update it
when adding and removing loads (Section 4.2.3 on page 30). Since
the maximal peak objective function was a bottleneck function we
investigated and developed other objective functions (Section 4.3 on
page 35).

We then developed a 1s algorithm which involves different types
of moves. We first focused on shift moves (Section 5.2.1 on page 47),
which produced high quality solutions in short computational time
for instances without batteries. Since batteries made the problem
harder, we first tried to allocate them at the end of 1s, but this ap-
proach produced low quality solutions. The only effective way to
take into account batteries is to optimize them during Ts, therefore
we developed the battery move (Section 5.2.3 on page 47) and the
MILP-battery move (Section 5.2.5 on page 51). The Ts based on the
former move gave better results, but the solutions were still not very
close to optimal.

Finally we devised a Ts variant using the mMILP-zeroes-fixing move
(Section 5.2.6 on page 51), which even when batteries are available
produces near optimal “raw” solutions, that could further be im-
proved with shift moves.

For comparison purposes we implemented also two alternative al-
gorithms: Partial Linear Relaxation (PLR) with reduced miLp, and

88



7.1 FUTURE WORK

local branching. The former gave very high quality solutions, but re-
quired higher computing time than Ts: moreover it could solve only
a subset of instances. For local branching, computing times turns out
to be much higher (up to several order of magnitude) than for Ts.

The heuristics we developed showed to be very effective, they gen-
erated solutions within 3% from the reference ones in very short com-
puting time, less than 3 minutes for the largest instance, and this
looks promising for even larger instances, for which we could not
compute reference solutions.

7.1 FUTURE WORK

To conclude we mention a few directions for future work.

As far as the problem is concerned, it would be interesting to allow
energy flow from a house to another. Whenever a house has exceed-
ing energy it might give it to other houses. Batteries and rv panels
might then be shared among the houses. Batteries-equipped houses
might act as storage for the whole aggregate, collecting energy from
the grid or the rv-equipped houses; the retailer might instead set
up an internal market, where houses compete with the main energy
producer in the grid.

In the problem the activities scheduling is optimized over a single
day, from midnight to midnight. Users can not specify execution
windows that end at late night. It would be interesting to overcome
this limitation, either by chaining multiple days and optimizing over a
longer period, or by finding a way to impose “boundary conditions”.

As far as the heuristic is concerned, it would be interesting to utilize
non flat ideal solutions. In order to minimize the maximal peak of
the demand curve, we minimized the distance between the current
curve and the flat ideal one. However, there are no limitations on the
shape of the ideal curve, the algorithms (and even the program) we
developed can be used with other shapes®’. A non flat ideal curves
might be useful in a scenario where rv panels produce a significant
amount of energy. If a production forecast is available, the retailer
might set an ideal curve which is higher during such time slots, in
order to maximize rv panels usage.

The users specify their appliances execution windows a day ahead,
so that the energy retailer can find the optimal scheduling and buy
the energy in advance. If an user is in the need to use an appliance re-
gardless of the scheduling, the retailer has to re-negotiate the energy
supply. It might be interesting to let the user change the appliances
execution window only few time slots in advance, fix the already
started activities, and find the new optimal scheduling. The retailer
would then re-negotiate for a smaller amount of energy.

1 We actually made a couple experiments with an exponential increasing ideal curve
(Figure 4.3 on page 37)

89



7.1 FUTURE WORK

The most effective way to exploit batteries is to optimize them
together with activities, as we partially did with battery moves. It
would be interesting to analyse the structure of optimal solutions for
small instances, in order to identify some structures that could be
exploited to better combine batteries and activities.

90



IMPLEMENTATION

In this chapter we give a brief overview about the implementation
and we discuss in detail some important or interesting aspects, such
as:

¢ what data structures we used to efficiently explore the neigh-

bourhood;
* how we implemented an extensible framework for local search
methods.
CONTENTS
A1 Data structures for efficient neighbourhood exploration 92
A.1.1  Incomplete energy profile 92
Incomplete energy profile in other algorithms 96
A.1.2  Move semantic 96
A.2  Local search framework 96
A.2.1 The algorithm 97
Early stop and diversification 97

A.2.2  Template policies 101
Why template parameters? 101
Policies 102
A.3 Multi-threading 102

We implemented all our algorithms in C++. We chose C++ because
we thought it was the language with the best balance among control
and expressiveness for the type of application we needed. The pro-
gram is crU bound, i. e., the cru is the most used component. Higher
level languages provide many convenient features such as bounds
checking for arrays or garbage collection, but the user is forced to
pay for them even when not used. Lower level languages grants in-
stead even more control, e. g., no constructors nor destructors impli-
cit calls, but lack most basic data structures such as vectors, lists or
hashes, and other features such as exception handling and (partial)
functional paradigm. We strived to use known best practices to make
the code as safe, as readable and as efficient as possible.

The main core is written in plain standard C++98 (in some places
we optionally enabled C++11 new feature move semantic, see Sec-
tion A.1.2 on page 96), while we made use of Boost library for auxil-
iary operations, such as multi-threading and options parsing [Karls-
son, 2005]. The program should be fairly portable, with the exception
of the component which executes external processes, which currently

91



A.1 DATA STRUCTURES FOR EFFICIENT NEIGHBOURHOOD EXPLORATION

works only on the Windows® operating system’ and on PosIx sys-
tems. We used the AMPL solver with the IBM ILOG CPLEX 12.4.0.0
solver for solving MILP problems.

A.1 DATA STRUCTURES FOR EFFICIENT NEIGHBOURHOOD EXPLOR-
ATION

As described in Section 4.2.2 on page 29, a solution contains:
e Starting slots for each activity (h,a);

¢ Flows for each house, battery and time slot (corresponding to
Vbt — vﬁ,blt, i. e., when positive the battery is charging, when is
negative the battery is discharging);

* Energies for each house, battery and time slot (corresponding
to enp,t);

e A list of all activities that influence each time slot;

* An energy profile, i. e, the data about how much energy is
bought and sold by each house and by the aggregate for each
time slot (corresponding to some combination of yj, ;).

The energy profile is actually a separate entity from a solution since
there are other entities which can have an energy profile).

A.1.1  Incomplete energy profile

In this section we explain how we implemented the generation and
exploration the neighbourhood at each Tabu Search (1s) iteration.
This implementation detail turned out to be very important, as us-
ing the wrong data structures results in significantly longer execution
times. We describe our initial implementation and how we improved
it until the final one.

In s we pick the best solution in the current solution’s neighbour-
hood
Xgi1 < min Nj.

We might create the set Ni and then to find its minimum, but this
requires very large memory. A better approach is to store only the
current best solution in the neighbourhood during its exploration (the
initial best solution has to have co as value if the iteration can be non-
improving), as we show in Algorithm A.1.

Windows is a registered trademark of Microsoft Corporation in the United States
and other countries.

92

Naive
implementation of
neighbourhood
exploration results
in longer execution
time



A.1 DATA STRUCTURES FOR EFFICIENT NEIGHBOURHOOD EXPLORATION

Algorithm A.1 Neighbourhood’s exploration, first version

FIND-BEST-NEIGHBOUR-1 (X))
1 x* ¢+ o
2 for m € ALL-POSSIBLE-MOVES
3 do
4 x < Cory(xp)
5 > Compute the resulting solution after the move
6 APPLY-MOVE(x, m)
7 UPDATE-OTHER-VARIABLES (X)
8 if x <x*
9 then x* + x
10 return x*

The “other variables” are those variables that are not used to eval-
uate the solution, e. g., the activities in each time slot. In the current
iteration we do not need those variables, it is therefore useless to up-
date them for solutions that will be discarded, we can do it only for
the best solution found, as we show in Algorithm A.2.

Algorithm A.2 Neighbourhood’s exploration, second version

FIND-BEST-NEIGHBOUR-2(X)
xX* 4 o0
for m € ALL-POSSIBLE-MOVES
do
x < Cory(xp)
> Compute the resulting solution after the move
APPLY-MOVE(x, m)
if x < x*
then x* + x
UPDATE-OTHER-VARTABLES (x*)
return x*

O ON Ul B~ W N R

=
o

There is a subtle problem with this method that makes the pro-
gram extremely slow: we copy the entire initial solution in a tem-
porary variable, and we update its energy profile. Then if there is
an improvement we copy the entire current solution in the best solu-
tion variable. Unfortunately copying an entire solution is extremely
expensive.

A solution contains the starting slots, the batteries energies and
flows, the list of activities for each time slot and the energy profile.
During neighbourhood exploration we only use the energy profile,
since all the other variables are the same as the current solution. Even

93

Copying a solution
is expensive



A.1 DATA STRUCTURES FOR EFFICIENT NEIGHBOURHOOD EXPLORATION

if we save time by delaying updating these variables, we still waste
time in copying them.

We then decoupled the energy profile from the solution. We are
only interested in the neighbours energy profile — which is used by
the objective function to evaluate them — not in any of the other vari-
ables. We can skip altogether copying the starting time slots, the bat-
teries energy and flow. We do it una tantum at the end of iteration,
as we show in Algorithm A.3.

Algorithm A.3 Neighbourhood’s exploration, third version

FIND-BEST-NEIGHBOUR'3 (&0)

1 > Use the energy profile instead of the solution
2 pfé-oo
3 m* < INVALID-MOVE
4 po < ENERGY-PROFILE(X)
5 for m € ALL-POSSIBLE-MOVES
6 do
7 p « Corx(po)
8 > Compute the resulting profile after the move
9 APPLY-MOVE(p, m)
10 if p <p*
11 then
12 prp
13 m* <—m

14 x* < UPDATE-PROFILE(X,, p*)
15 UPDATE-OTHER-VARIABLES (x*)
16 return x*

Finally, we can identify another set of variables that we could avoid
copying. During the neighbourhood exploration we apply a set of
moves to the initial solution, generating all the neighbours. Different
moves involve different houses, but a single move involves a single
house?, and the energy profiles of all other houses are not affected by
the move. We are copying the full set of houses energy profiles, while
only one is actually changing.

We then split the energy profile in three different structures:

GLOBAL PROFILE It stores the aggregate profiles (bought, sold, dif-
ference), space complexity is O (t);

ENERGY PROFILE It stores a global profile and the full set of houses
demand curves, space complexity is O (t + ht);

This is true for shift moves but false in general. The point is that a single move
involves a small subset of the houses.

94

Only the relevant
house’s profile is
copied



A.1 DATA STRUCTURES FOR EFFICIENT NEIGHBOURHOOD EXPLORATION 95

INCOMPLETE ENERGY PROFILE It stores a global profile and a sub-
set of the houses demand curves, space complexity is O (¢ + kt).

t and h are respectively the number of time slots and houses in the
instance. k is the number of houses involved in the move, it is 1 for
shift moves, and in general k < h.

For each neighbour we then make an incomplete copy of its energy
profile, and we update only the global profile (which is used by the
objective function to evaluate a solution) and the demand curves of
the houses involved in the move. We fetch the other houses demand
curves from the initial solution only at the end of the iteration. We
show this final version in Algorithm A.4.

Algorithm A.4 Neighbourhood’s exploration, fourth and final version

FIND-BEST-NEIGHBOUR-4 (X))

> Use an incomplete energy profile
ip* 4= o0
m* <— INVALID-MOVE
for m € ALL-POSSIBLE-MOVES
do
ipp <— INCOMPLETE-COPY (X, Hyy )
> Compute the resulting incomplete profile after the move
ip <~ APPLY-MOVE(ip, m)
if ip < ip*
then
prep
12 m* <—m
13 x* <— UPDATE-PROFILE(X,, ip*)
14 UPDATE-OTHER-VARIABLES (x*)
15 return x*

O N Ul B~ W N R

| )
= O

We can now wonder whether there is room for more improvements.
For short activities we still copy the full house’s demand curve while
we actually need only few time slots (this is especially true for battery
moves, which involve only a two time slots). Such a change would
however be much more complicate. First of all we still need the whole
profile for computing the p-norm of difference and comparing solu-
tions, so we still have to loop over O (kt) elements, whether we copy
all of them or we leave some in the initial profile. Secondly, in mul-
tiple moves iterations (e. g. swap moves) we would have to keep track
of which time slots are involved for each house, taking care of pos-
sible overlapping. An improvement would hardly justify the huge
additional complexity it would cause.



A.2 LOCAL SEARCH FRAMEWORK

Incomplete energy profile in other algorithms

In every algorithm where we copy the initial energy profile, apply a
move on it, and compare it to the best one, we can use the incomplete
profile to reduce execution time. We copy only the relevant houses
demand curves while we later fetch the remaining — that are not used
to compute the global profile nor for comparisons — directly from the
original energy profile. This applies to every kind of moves, and to
GRASP as well.

A.1.2 Move semantic

Another minor improvement for avoiding useless copies comes out-
of-the-box with the new C++11 standard: move semantic. Whenever
we build a temporary value and then copy it to another variable we
are making an useless copy. The same is true when we return a
complex value from a function and assign it to a variable: the copy
constructor is called for the operation.

Using move semantic we can force moving variables instead of copy-
ing them. When we move a variable to another the latter is overwrit-
ten, and the former is emptied and left in a destructible state. There
is no longer overhead to construct a complex variable and moving its
value to another one.

A.2 LOCAL SEARCH FRAMEWORK

In this section we describe in detail the implementation of an extens-
ible framework for local search algorithms. The framework can be
used with different types of moves, and its behaviour can be special-
ized through different policies.

The local search framework is a set of template classes which imple-
ment local search and 1s. Local Search Framework is the main class,
and it implements the basic local search algorithm: given an initial
solution, its neighbourhood is iteratively explored for the next solu-
tion. How the neighbourhood is explored is not a Local Search Frame-
work’s concern, this operation is demanded to the Exploration Policy
interface, it is therefore possible to seamlessly use the framework with
different types of moves .

The framework offers support for a Tabu List (TL), i. e., at each iter-
ation it fetches the current Tabu Move (T™M) from Exploration Policy
and stores it in a list. At the next iteration it forwards the TL to Ex-
ploration Policy. The latter is so lifted from the burden of managing
a TL, possibly dynamically changing its size; it only has to provide a
new T™ at the end of its iteration, and it gets a valid TL at the next
iteration. In Ts an iteration may be non-improving, so the framework

96

Objects are moved
instead of copied and
discarded

High level local
search algorithm is
decoupled from the
neighbourhood
exploration
algorithm



A.2 LOCAL SEARCH FRAMEWORK

also stores the best solution found so far — and the best feasible one,
since it is possible to explore the infeasible region.

In Figure A.1 we show the class diagram of the Local Search Frame-
work, and in Figure A.2 we show the concrete classes that implements
the Exploration Policy interface. Each exploration policy explores a
neighbourhood corresponding to a move, as described in Chapter 5

on page 44.
A.2.1  The algorithm

We show the complete procedure implemented in Local Search Frame-
work in Algorithm A.5 on page 99. x is the initial solution, x* is the
best solution found, x,, ;.. is the best feasible solution found, and x
is the current solution.

recent-list and tabu-list are First-In First-Out (F1F0) queues with max-
imal capacity (whenever their size grows above their capacity the
least recent element is discarded). The former contains the best feas-
ible solutions, and it is used to keep track of whether the solution is
improving, and the latter contains the Tms associated with the recent
moves.

state is set to the current feasibility state, i. e., STRICT-FEASIBILITY,
LOOSE-FEASIBILITY or INFEASIBILITY. The algorithm executes different
branches depending on in which state it is. slacks variable contains
the slacks of infeasible solutions. Note that the neighbourhood ex-
ploration might return a neighbour which differs from the current
solution only for a subset of houses; in this case only related slacks
are updated.

Early stop and diversification

At the end of each iteration the framework might stop early depend-
ing on the result of a helper function, that we show in Algorithm
A.6. The current solution is compared to the best solutions N itera-
tions ago, if it has not improved then the framework stops. N must
be larger than the TL size, otherwise the whole purpose of T™s is
defeated: few non-improving iterations might be useful to climb up
local minima’s walls.

If the current solution was infeasible, then the framework switches
to loose feasibility phase, in order to recover feasibility. Otherwise, if
the current solution was instead strictly feasible, then the framework
either returns the best feasible solution found, or diversifies. Dur-
ing loosely feasible phase most iterations are non-improving, so the
framework never stops early.

In case of diversification the framework merely forwards the re-
quest to the Exploration Policy. In case the latter is not able to per-
form a diversification, the execution ends.

97



98

»
(3 3 9zIS:pIS : IZIGISIINER] ‘2 UONNJOS JSUO0D : UOTINJOSIUSLIND) MO (29 uornjog 3suod : uonnjogpasordwr)uonnjogparorduwrerols
(39 UoTIN[OG ISUOD : UONYN[OGISAQ)UOIN[0G]ISIEIDS (2 uoTINJOG JSUOD : UOHN[OGIUILIND)SSAIZ0I[II0IS
(37 9z1s::p3s : 9zZIGISI Nge] [enIUl)aZIS)ISI TNge] [ETUIdS (39 yomN[Og ISUOD : UOHN[OG[HTUT)UOIN[OS[EIITU[IIO)S
Ad1[0g9Z1G)STTNqRL Ad110 48591301
< <ddeJIDIUI> > < <ddeyILRIUT> >
<
&
2 ’
3 29 Aorjoquonerordxy : ()I9ydIeagssadde
“ 19 Aorjogssardoig : ()AoroJssa1301 193
< uonnjog : (2y uoyNJog JSU0d : uonnjogrenIur)asoxdur

1009 (39 UOHN[OG JSUOD : UOINJOS[LIIIUT)YIIeds
uonnjog : ()JuonnNOSIOqU3IaNISoq
Jjuowd[gNge], : ()jusw[gngerixau

(33 <yuPWI_IANQE] >ISI[::PIS JSUOD : SIAOINNALI)ISIINge]Ias

Adr0quonerordxy
< <ddeJIIUT> >

uonnjog : uornjogpasordur
uonn[og : uonN[Og[EHIUT

Y ozIS:p)s : 9zZIGISINge)
<O[qNOP>I0}IAA:PIS : SOLHIGISLIJUT
areISANIqIsea : 93eISAII[IqISed)
[00q : S[qISEdju}Ie)S

[00q : AJISIOATp

Y OZIS:PIS : SUOHJRILISIDAI([XEW

Y 9ZIS:P)S © SUOHRII[XeW

SIOMIWBIJYDILIG[ed0]

werderp Sse S,JIOMIWeI DIeds [ed07] Iy aINJL]




A.2 LOCAL SEARCH FRAMEWORK 99

Algorithm A.5 Complete local search

LocAL-SEARCH(X)

1 X"+ X
2 if FEASIBLE(x;)
3 then E;keasible X
4 else E;ﬂeasible oo
5 X< X
6 recent-list < @
7 tabu-list < @
8 slacks < INTTIALIZE-SLACKS(X))
9 state <— INITIAL-FEASIBILITY-STATE
10 fori < 0 to MAX-ITERATIONS
11 do
12 (x, next-tabu-move) < FIND-NEIGHBOUR(X, fabu-list, slacks)
13 tabu-list <— tabu-list U next-tabu-move
14 > Dinamically enlarge or reduce tabu list
15 UPDATE-TABU-LIST-SIZE( )
16 STORE-PROGRESS (X )
17 if state 7 STRICT-FEASIBILITY
18 then slacks < UPDATE-SLACKS(x)
19 if state = STRICT-FEASIBILITY
20 > Previous solutions were infeasible, so they are discarded
21 then recent-list <+ @
22 if x < x*
23 then x* + x
24 if x < X, gpre /\ State = STRICT-FEASIBILITY
25 then K?easible X
26 if SHOULD-STOP-EARLY? (X, recent-list, state)
27 then stop

28 return x*




A.2 LOCAL SEARCH FRAMEWORK 100

Algorithm A.6 Local search early stopping criterion

SHOULD-STOP-EARLY? (X, recent-list, state)

O CoN Ul B~ W N R

| )
= O

12
13
14
15
16
17
18
19
20
21

if x > recent-list
then
> The best solution has not improved over the last few iterations
if state = STRICT-FEASIBILITY
then
> We hit the bottom of feasible region
if 4 < MAX-DIVERSIFICATIONS
then J < 4+1
recent-list + @
DIVERSTFY/( )
else
return true
elseif state = INFEASIBILITY
then
> We hit the bottom of infeasible region
> We head back to feasibility
state <— LOOSE-FEASIBILITY
else
> The best solution has improved over the last few iterations
recent-list < recent-list U x
return false




A.2 LOCAL SEARCH FRAMEWORK

Figure A.2: Concrete iteration types

<<interface>>
ExplorationPolicy
SALTR

I \ N
’ o I \ N

MixedExplorationPolicy

7’ / \ \

s // \
// oy \ \\
o, \ N

BatteryExplorationPolic/y/ BatteryMilpExplorationPolicy

7 (

/ / \
/ / \
\

/;S/hif/yéxplorationPolicf\

LargeExplorationP/)licy l SwapExplorationPolicy

\
\
\

/
!
1

MilpExplorationPolicy

/
/
y/

ZeroMilpExplorationPolicy

A.2.2  Template policies

As said before, Local Search Framework class defines a general al-
gorithm, relying on other entities to perform single steps of that al-
gorithm. This is called template method pattern, and we implemented
it using template classes policies (despite sharing the “template” name,
the two concepts are not related).

Why template parameters?

At early stages of development there was only one local search method:
the Tabu Search (1s) method with shift moves (Section 5.2.1 on page 47),
implemented with regular functions. Later another method was ad-
ded: the Ts with MILP moves (Section 5.2.4 on page 51). Since they
were both s methods, they shared the same external algorithm which
handles the TL and drives the exploration, their only difference is how
to explore the neighbourhood of a solution. Hence, we wanted to
factor out such external algorithm. This is a typical use case for the
template method pattern: a common algorithm makes use of different
functions depending on the chosen method. It can be implemented in
different ways, the most common being abstract virtual functions im-
plemented in derived classes. An alternative could be bare function
pointers.

101

A basic algorithm is
specialized using
template method
pattern



A3 MULTI-THREADING

Virtual functions could take care of the behavioural aspect, but
there was another issue: T™Ms were of different types in the two meth-
ods — they were either single moves or set of moves. What type
should the TL had stored? Single moves could be represented as
set of one move, but this is hardly elegant and lesser useful if new
methods were added with entirely different moves.

The solution was then to use template parameters to specify iter-
ation and ™™ type. The client code could build as many different
frameworks as necessary, with different iteration and move types, as
long as they implemented a given compile time interface (e. g. it must
be possible to compare T™s and to store them in containers).

Policies

Policies are a way to implement template method pattern using tem-
plate parameters in C++, proposed by Alexandrescu [2001]. A tem-
plate parameter is expected to define a member function to imple-
ment a specialized algorithm, called in a template class member func-
tion. A client can then write different classes that implement different
algorithms and feed them to the template class, obtaining many sim-
ilar complete algorithms.
The framework uses template policies for various operations:

* Exploring the neighbourhood at each iteration.

* Managing TL size. A smart policy checks if the current solution
is the same as the last minimal solution, i. e., if during the ex-
ploration we came back to an old solution. Chances are that this
is a deep local minimum, so deep that TL is not long enough to
prevent returning to it. In that case the TL size is doubled for
few iterations.

e Storing progress at each iteration. It might be useful to store the
solution value at each iteration for performance analysis.

In all cases default policies do nothing, but there exist other special-
ized policies (e. g. the various exploration policies shown in Figure
A.2). Since template instantiation happens at compile time, the com-
piler has the chance to perform many micro-optimizations in order
to minimize overhead. Anyway, the program spends the vast major-
ity of the time inside exploration policy’s function, so performance
impact is unimportant at this level.

A.3 MULTI-THREADING

Since each solution is created and improved independently of the
other ones, the procedure is reentrant, therefore they can be executed
in parallel using multi-threading. A thread pool is created with a

102

Template parameters
allow to specialize
data types

Client specializes
default algorithm
using template
policies

GRASP generation
and local search are
reentrant



A3 MULTI-THREADING

fixed number of threads, then each solution is created or improved
as soon as there is a thread available. Since all the operations are
cPU bound, this is only useful when running the program on a multi-
processor or multi-core machine, in that case performance improve-
ment is roughly linear over cru number.

Solutions are independent, so even if created and improved in par-
allel — as long as the program’s parameters are the same — ought to
be the same. However, some algorithms (namely Grasp) make use of
random numbers. The random numbers generator itself is a thread-
safe global object, the random numbers stream is therefore determin-
istic (it can of course be initialized with a random seed), but threads
scheduling is indeterminate, and so is the order in which different
threads will ask the generator for random numbers.

103



BIBLIOGRAPHY

Alessandro Agnetis, Gabriella Dellino, Paolo Detti, Giacomo In-
nocenti, G. de Pascale, and Antonio Vicino. Appliance Oper-
ation Scheduling for Electricity Consumption Optimization. In
soth IEEE Conference on Decision and Control and European Con-
trol Conference, pages 5899-5904, Orlando, Florida, 2011. ISBN
9781612847993. URL http://www.nt.ntnu.no/users/skoge/prost/
proceedings/cdc-ecc-2011/data/papers/0506.pdf. (Cited on

page 18.)

R.K. Ahuja, 0. Ergun, J.B. Orlin, and A.P. Punnen. A survey of very
large-scale neighborhood search techniques. Discrete Applied Math-
ematics, 123(1):75-102, 2002. URL http://www.sciencedirect.com/
science/article/pii/S0166218X01003389. (Cited on page 46.)

Andrei Alexandrescu.  Modern C++ Design: Generic program-
ming and design patterns applied. Addison-Wesley, 2001.
ISBN o0201704315. URL http://erdani.com/index.php/books/
modern-c-design/. (Cited on page 102.)

A. Barbato, A. Capone, G. Carello, M. Delfanti, M. Merlo, and
A. Zaminga. Cooperative and Non-Cooperative house energy
optimization in a Smart Grid perspective. In 2011 IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks, pages 1-6. IEEE, June 2011a. ISBN 978-1-4577-0352-2.
doi: 10.1109/WoWMOM.2011.5986478. URL http://ieeexplore.
ieee.org/lpdocs/epicO3/wrapper.htm?arnumber=5986478. (Cited
on pages 7, 18, and 20.)

A. Barbato, A. Capone, G. Carello, M. Delfanti, M. Merlo, and
A. Zaminga. House energy demand optimization in single and
multi-user scenarios. In 2011 IEEE International Conference on Smart
Grid Communications (SmartGridCommy), pages 345-350. IEEE, Octo-
ber 2011b. ISBN 978-1-4577-1702-4. doi: 10.1109/SmartGridComm.
2011.6102345. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6102345. (Cited on pages 7, 9, 18, and 20.)

Jason W. Black and Richard C. Larson. Strategies to overcome
network congestion in infrastructure systems. Journal of In-
dustrial and Systems Engineering, (November), 2007. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.91.3390&rep=repl&type=pdf. (Cited on page 3.)

Giuseppe Carpentieri. MILP Optimization models for domestic load
management. Unpublished, 2012. (Cited on page 64.)

104


http://www.nt.ntnu.no/users/skoge/prost/proceedings/cdc-ecc-2011/data/papers/0506.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/cdc-ecc-2011/data/papers/0506.pdf
http://www.sciencedirect.com/science/article/pii/S0166218X01003389
http://www.sciencedirect.com/science/article/pii/S0166218X01003389
http://erdani.com/index.php/books/modern-c-design/
http://erdani.com/index.php/books/modern-c-design/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5986478
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5986478
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6102345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6102345
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3390&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3390&rep=rep1&type=pdf

Bibliography 105

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to algorithms. The MIT press, 2nd edition,
2001. ISBN 0-262-03293-7. URL http://mitpress.mit.edu/books/
introduction-algorithms. (Cited on page 33.)

Thomas A. Feo and Mauricio G. C. Resende. Greedy Random-
ized Adaptive Search Procedures. Journal of Global Optimiza-
tion, 6(2):109-133, March 1995. ISSN 0925-5001. doi: 10.1007/
BFo1096763. URL http://www.springerlink.com/index/10.1007/
BF01096763. (Cited on page 28.)

Matteo Fischetti and Andrea Lodi. Local branching.  Math-
ematical Programming, 98(1-3):23—47, September 2003.  ISSN
0025-5610. doi:  10.1007/s510107-003-0395-5. URL http:
//www.springerlink.com/openurl.asp?genre=article&id=doi:
10.1007/510107-003-0395-5. (Cited on pages 59 and 60.)

Fred Glover and Manuel Laguna. Tabu search. Springer, 1998. ISBN
9780792381877. URL http://www.amazon.com/exec/obidos/ASIN/
079239965X/ref=nosim/weisstein-20. (Cited on pages 45 and 46.)

Long Ha, Stephane Ploix, Eric Zamai, and Mireille Jacomino. Tabu
search for the optimization of household energy consumption. In
2006 IEEE International Conference on Information Reuse & Integration,
pages 86—92. IEEE, September 2006. ISBN 0-7803-9788-6. doi: 10.
1109/IR1.2006.252393. URL http://ieeexplore.ieee.org/lpdocs/
epic@3/wrapper.htm?arnumber=4018470. (Cited on page 17.)

Alain Hertz, Eric Taillard, and Dominique De Werra. A tu-
torial on tabu search. In Proc. of Giornate di Lavoro AIRO,
volume 95, pages 13—24, 1995. URL http://red.cs.nott.ac.uk/
~ajp/courses/g5baim/files/IntroTS.pdf. (Cited on page 45.)

Bjorn Karlsson. Beyond the C++ Standard Library: An Introduc-
tion to Boost. Addison-Wesley Professional, 2005. ISBN
978-0-321-13354-0. URL http://www.informit.com/store/
beyond-the-c-plus-plus-standard-library-an-introduction-9780321133540.
(Cited on page 91.)

Shalinee Kishore and Lawrence V. Snyder. Control Mechanisms
for Residential Electricity Demand in SmartGrids. In 2010 First
IEEE International Conference on Smart Grid Communications, pages
443—448. 1IEEE, October 2010. ISBN 978-1-4244-6510-1. doi: 10.
1109/SMARTGRID.2010.5622084. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5622084. (Cited on

page 17.)
Nathan Kowahl and Anthony Kuh. Micro-scale smart grid optim-

ization. In The 2010 International Joint Conference on Neural Net-
works (IJCNN), pages 1-8. IEEE, July 2010. ISBN 978-1-4244-6916-


http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://www.springerlink.com/index/10.1007/BF01096763
http://www.springerlink.com/index/10.1007/BF01096763
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10107-003-0395-5
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10107-003-0395-5
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10107-003-0395-5
http://www.amazon.com/exec/obidos/ASIN/079239965X/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/079239965X/ref=nosim/weisstein-20
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4018470
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4018470
http://red.cs.nott.ac.uk/~ajp/courses/g5baim/files/IntroTS.pdf
http://red.cs.nott.ac.uk/~ajp/courses/g5baim/files/IntroTS.pdf
http://www.informit.com/store/beyond-the-c-plus-plus-standard-library-an-introduction-9780321133540
http://www.informit.com/store/beyond-the-c-plus-plus-standard-library-an-introduction-9780321133540
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5622084
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5622084

Bibliography

1. doi: 10.1109/IJCNN.2010.5596726. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5596726. (Cited

on page 17.)

D. Livengood and R. Larson. The Energy Box: Locally Automated
Optimal Control of Residential Electricity Usage. Service Science,
1(1):1-16, March 2009. ISSN 2164-3962. doi: 10.1287/serv.1.1.
1. URL http://servsci.journal.informs.org/cgi/doi/10.1287/
serv.1.1.1. (Cited on pages 3, 4, 16, and 17.)

Silvano Martello, Mauro Dell’amico, and Rainer Burkard. Assignment
problems. SIAM: Society for Industrial and Applied Mathematics,
2009. ISBN 978-0898716634. URL http://www.assignmentproblems.
com/. (Cited on page 19.)

Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia. Optimal Res-
idential Load Control With Price Prediction in Real-Time Electri-
city Pricing Environments. [EEE Transactions on Smart Grid, 1(2):
120-133, September 2010. ISSN 1949-3053. doi: 10.1109/TSG.
2010.2055903. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5540263. (Cited on pages 3 and 17.)

D Picault, B Raison, S Bacha, J. de la Casa, and ] Aguilera. Forecasting
photovoltaic array power production subject to mismatch losses.
Solar Energy, 84(7):1301-1309, July 2010. ISSN 0038092X. doi: 10.
1016/j.solener.2010.04.009. URL http://www.sciencedirect.com/
science/article/pii/S0038092X10001556. (Cited on page 10.)

106


http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5596726
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5596726
http://servsci.journal.informs.org/cgi/doi/10.1287/serv.1.1.1
http://servsci.journal.informs.org/cgi/doi/10.1287/serv.1.1.1
http://www.assignmentproblems.com/
http://www.assignmentproblems.com/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5540263
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5540263
http://www.sciencedirect.com/science/article/pii/S0038092X10001556
http://www.sciencedirect.com/science/article/pii/S0038092X10001556

Bibliography 107



	Abstract
	Sommario
	Sammanfattning
	1 Introduction
	1.1 Energy demand curve
	1.1.1 Smooth demand curve

	1.2 Smart grids
	1.3 Energy Box
	1.4 Dynamic pricing
	1.4.1 The day ahead market

	1.5 This thesis
	1.5.1 Structure


	2 Residential Energy Load Management Problem
	2.1 Residential appliances scheduling
	2.1.1 An overview
	Photo Voltaic panels
	Selling energy to the network
	Batteries

	2.1.2 Objectives
	Minimization of total cost
	Minimization of global maximal peak
	Tracking a given demand curve

	2.1.3 Definition
	2.1.4 An example
	Multiple houses
	Realistic example


	2.2 Related and previous work
	2.3 Generalized Assignment Problem

	3 Mixed Integer Linear Programming model
	3.1 Model
	3.1.1 Sets
	3.1.2 Parameters
	3.1.3 Variables
	3.1.4 Constraints
	3.1.5 Objective functions

	3.2 Compact milp model
	3.2.1 Constraints
	3.2.2 Improvements

	3.3 Final model

	4 Generating an initial feasible solution
	4.1 grasp algorithm
	4.2 grasp for the Residential Energy Load Management Problem
	4.2.1 Algorithm
	4.2.2 Structure of a solution
	Energy profile

	4.2.3 Updating the energy profile
	Adding a load
	Removing a load
	Batteries as loads

	4.2.4 grasp in detail
	Using batteries


	4.3 Objective functions
	4.3.1 Ideal demand curve
	Maximal difference from ideal
	
數琠p
數琠-norm of difference from ideal
	Ideal curve in grasp

	4.3.2 Implemented functions
	Maximal aggregate peak
	Maximal difference
	Maximal difference and 
數琠p
數琠-norm
	Maximal difference plus p-norm
	Maximal peak plus maximal difference plus 
數琠p
數琠-norm

	4.3.3 Infeasible solutions

	4.4 Partial Linear Relaxation with reduced milp

	5 Tabu Search heuristics and improving a solution
	5.1 Tabu Search
	5.2 Tabu Search for the Residential Energy Load Management Problem
	5.2.1 Shift move
	5.2.2 Swap move
	5.2.3 Battery move
	Example

	5.2.4 milp move
	5.2.5 milp-batteries move
	5.2.6 milp-zeroes-fixing move
	5.2.7 Large move
	5.2.8 Mixed move
	Tabu Search control

	5.2.9 Tabu Moves
	5.2.10 Exceeding maximal local peak
	Infeasible exploration

	5.2.11 Early stopping and diversification

	5.3 Local branching
	5.3.1 Local branching for the Residential Energy Load Management Problem
	Refining



	6 Computational results
	6.1 Objective functions
	6.1.1 
數琠p
數琠-norms

	6.2 grasp
	6.2.1 Filtering criteria
	6.2.2 Infeasible generation
	6.2.3 Batteries usage in grasp

	6.3 Tabu Search
	6.3.1 Tabu Search with shift moves
	6.3.2 Tabu Search with milp moves
	6.3.3 Tabu Search with mixed moves
	6.3.4 Tabu Search with milp-zeroes-fixing move and mixed moves
	6.3.5 Tabu Moves
	6.3.6 Early stop and diversification
	6.3.7 Infeasible exploration

	6.4 Partial Linear Relaxation and reduced milp
	6.5 Local branching
	6.6 Comparison
	6.7 Multi-threading

	7 Concluding remarks
	7.1 Future work

	A Implementation
	A.1 Data structures for efficient neighbourhood exploration
	A.1.1 Incomplete energy profile
	Incomplete energy profile in other algorithms

	A.1.2 Move semantic

	A.2 Local search framework
	A.2.1 The algorithm
	Early stop and diversification

	A.2.2 Template policies
	Why template parameters?
	Policies


	A.3 Multi-threading

	Bibliography

