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Abstract: Buildings account for large part of global energy consumption. Besides energy consumed
due to normal operation, a large amount of energy can be wasted due to faults in buildings
subsystems. Fault detection and diagnostics techniques aim to identify faults and prevent energy
waste, but are often difficult to apply in practice. Data-driven methods, in particular, require an
adequate amount of fault-free training data, which is rarely available. In this paper, we propose
a method for anomaly detection that exploits consensus among multiple identical components.
Even if some of the components are faulty, their aggregate behaviour is overall correct, and it
can be used to train a data-driven model. We test our method on variable-air-volume units in an
existing building, executing two experiments grouping the components according to ventilation unit,
and according to room type. The two experiments identified the same set of anomalous components,
i.e., their behaviour was different from the rest of the group in both cases, and this suggests that the
anomaly was not due to wrong group assignment. The proposed method shows the potential of
exploiting consensus among multiple identical systems to detect anomalous ones.

Keywords: fault detection and diagnosis; consensus; smart buildings

1. Introduction

Nowadays, buildings have a large impact on both energy consumption and other environmental
effects such as carbon emissions. In the European Union they are responsible for 40 % of the total
energy usage and 36 % of CO2 emissions [1,2]. Similarly, in the United States, they are responsible for
about 41 % of primary energy consumption in 2010, which was 44 % more than transports and 36 %
more than industry. Total building primary energy consumption in 2009 was about 48 % higher than
in 1980, going from 1290 TW h to 2784 TW h [3]. It is, therefore, evident that buildings are a key sector
for achieving environment and climate targets such as 20 20 by 2020, i.e., 20 % reduction in greenhouse
gases and 20 % share of renewable energy sources by year 2020 [4], and the more recent 30 % energy
efficiency by year 2030 [5].

Modern commercial buildings contain large and complex systems, such as
heating, ventilation and air-conditioning (HVAC) and lighting, and their operation is controlled
by automated building management systems (BMSs), which often require a network of sensors,
meters and actuators. Faults in these systems impact building operations, e.g., by causing occupants
discomfort, but also increase energy usage. The most common faults in commercial buildings in
U. S. are estimated to have caused over 3.3 billion dollars in energy waste in 2009 [6], and over
7 billion dollars in 2017 [7]. It is often difficult to precisely identify faults, and sometimes even
to detect them, and a system could operate for a long time before the building management even
notices it is not working correctly [8]. Fault detection and diagnostics (FDD) techniques aim to detect
faults and identify their precise location and cause. Research and application of FDD techniques,
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applied successfully in other fields for several decades, gained traction in the buildings sector in the
past few years.

Ventilation units are among the largest and most critical systems in buildings, and account for large
energy consumption. Their faults, such as incorrect HVAC on/off modes or inappropriate setpoints for
thermostats, are responsible for a large share of energy waste [7]. While many FDD techniques have
been applied to the large air handling unit (AHU), faults and misconfigurations involving variable air
volume (VAV) units at room level are often ignored [9]. However, considering that the VAV units have
the main responsibility of direct air supply to each room, and taking into account the importance of
attaining good indoor air quality and thermal comfort, proper monitoring and FDD investigations of
VAV units seems very sensible.

Many FDD techniques have major limitations when applied in practice, due to non-ideal conditions
of the real world. Model-based techniques require detailed knowledge of the system under test, which is
often not available. Data-driven techniques, on the other hand, require validated and fault-free historical
data to learn the correct behaviour of the system. Historical data is often available, but it is rarely
validated, and there is a risk that faulty behaviour is used in the training phase.

Peer validation and consensus-based validation, on the other hand, can be used to mitigate this
issue. Multiple identical or similar systems are considered together, under the assumption that the
majority of them operate correctly. When their historical data is used to train a model, the contributions
from faulty systems are small compared with the ones from healthy ones, and their effect on the model
is diluted. Therefore, the requirement for fault-free training data is lifted, and faulty systems are
identified as outliers among the healthy ones. This eliminates the need for complex and sophisticated
models and large system operation datasets.

The rest of the paper is organized as follows. The state of the art is reviewed in Section 2.
The proposed technique is introduced in Section 3. Section 4 presents the case study and discusses
results and implications. Finally, conclusions are drawn in Section 5.

2. State-of-the-Art

Kim and Katipamula present a comprehensive review of recent FDD methods for building
systems [10]. The authors identify three main categories, depending on the approach used:
model-based methods, data-driven methods and rules-based methods.

In model-based methods, an explicit model of the system under test is created, using first
principles physics, physics and other system and envelope modelling techniques. Results obtained
from the model are compared with the ones obtained from the actual system, and, if the two deviate,
a fault is detected. Model-based methods have usually high accuracy and can detect faults with smaller
impacts, as well as faults absent from historical data. By modifying the model, it is possible to simulate
faulty conditions, which makes possible to precisely diagnose faults. On the other hand, such models
require extensive knowledge of the system under test and cannot easily be extended to other systems.
Correctly estimating the model’s parameters is also a challenge [11].

In data-driven–or history-based–methods, a model of the system under test is created from
historical data. Several techniques exist, such as artificial neural networks, principal component
analysis and statistical machine learning algorithms. The model is treated as a black box and no
understanding of the system is necessary. For this reason, these methods can often be easily extended
to other systems by simply re-training the model from different data. On the other hand, a relatively
large amount of fault-free historical data must be available to train the model. This makes data-driven
methods unsuitable for newly deployed systems and for situations where historical data is not
provably fault-free. Independent sets of labeled faulty data are often necessary to perform precise fault
diagnostics and identification.

In rules-based methods, a set of rules describing the behaviour of the system under test is defined.
Rules are usually obtained from expert knowledge and technical documentation, and can describe
both correct and faulty behaviour, which makes possible to precisely diagnose faults. No training
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data is necessary, and only a high-level knowledge of the system is needed. However, rules can only
represent relatively simple systems and cannot properly describe complex interactions.

To the best of our knowledge, no previous work has been done on using consensus-based
techniques for FDD in buildings systems, and specifically on VAV units used to control CO2 level.
Narayanaswamy et al. present a model, cluster and compare method for FDD on VAV units, where data
from several units are used to detect anomalies [9]. Linear models are trained for each individual VAV
unit, and the obtained parameters undergo a clustering procedure. Units that do not belong to any
cluster are identified as anomalous and, finally, the results are used to generate a set of expert rules for
anomaly detection. The authors deploy and test their method on a real building, and use it to detect
anomalies with respect to temperature control in rooms.

Consensus techniques have been used in the field for other purposes, such as features selection.
Partially redundant measurements in complex systems such as HVAC systems can make it difficult to
apply FDD methods, which are often not designed to handle conflicting inputs or large amounts of
inputs. Yuwono et al. present a method for feature selection using swarm intelligence and consensus
clustering, which can be used to reduce and aggregate the number of features used in FDD methods [12].
Consensus clustering has the advantage that the number of clusters is not fixed in advance, instead,
clusters are identified automatically.

Consensus-based techniques have also been used for FDD in other fields. FDD methods often
use data and findings from models and laboratory tests to validate or predict data for systems in
the field. Differences from the model, and different conditions between tests and the real world,
can reduce methods accuracy and effectiveness. Byttner et al. present a FDD method for vehicles based
on consensus between such models and tests, and on-field systems [13]. Data is first preprocessed
on-vehicle and interesting features are identified, which are sent to a central server that collects them
for all vehicles. The central server searches for outliers, i.e., features from a single vehicle that do
not match the overall distribution across the entire fleet, laboratory tests, or models. The authors
prepare two different experiments, one for detecting faults in cooling systems for large vehicles,
and one for detecting faults in hard-drives. In the former experiment, only a single real vehicle was
used in multiple different driving conditions and paired with a simulated one, however, in the latter
experiment, several different hard-drives were used.

Bianchin et al. propose another example of consensus-based techniques: a method for FDD in
sensors networks based on clustering and consensus [14]. A token travels across the sensors network,
gathering measurement as it visits each node, and computing similarity among them. When a faulty
node is present, it is isolated to its own cluster, while connectivity among the other nodes is maintained.
The method is shown to be used for static estimation, i.e., when the measured quantity is constant
over time, and also for dynamic estimation, i.e., when the measured quantity changes over time and
the network must produce a real-time estimation.

Consensus-based techniques are popular in the field of fault-tolerant control, where multiple and
partially redundant agents propose concurrent decisions. Such decisions can lead to conflicts due to
faults in the system, but also due to noise, missing information or other causes. Multiple agents can
then negotiate between each other or be excluded by the majority until a consensus is reached.

Davoodi et al. present a method for consensus control in multi-agent systems and report an
experiment on autonomous unmanned underwater vehicles [15]. Zhou et al. present a method for
actuator fault estimation in multi-agent systems, where agents can asymptotically converge to a
common strategy with bound errors [16].

Consensus-based algorithms are also a popular approach for distribute decision support systems.
Lee et al. present a technique to control a multi-microgrid using consensus between peers [17].
Liu et al. present a technique for energy sharing in the context of community energy internet, where a
global objective function is optimized through consensus among peers [18].

Table 1 summarizes the advantages and disadvantages of categories of FDD methods.
Traditional data-driven methods do not require deep knowledge of the system, support complex
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dynamics, and can be easily generalized to other systems. However, their main disadvantage is to
require fault-free historical data to train a model. Consensus-based data-driven methods, on the other
hand, replace this requirement with the one for multiple identical systems, while maintaining the
other advantages.

Table 1. Advantages of FDD methods. Consensus-based methods have similar advantages and
disadvantages to traditional data-driven methods. Their respective trade-offs, underlined in the table,
are the requirements for multiple identical systems, and the requirement for fault-free historical data.

Advantage Data-Driven Model-Based Rule-BasedTraditional Consensus-Based

Supports complex dynamics X X X
Has high accuracy X
Can be easily generalized to other systems X X
Does not require detailed knowledge X X X
Does not require expert knowledge X X
Does not require fault-free historical data X X
Does not require multiple identical systems X X X

Problem Statement

Data-driven methods offer several advantages for FDD, however, they have a major drawback of
requiring fault-free training data, which is rarely available in practice. If historical data was generated
by a faulty system, the resulting model would later recognize similar faults as healthy conditions,
reducing its effectiveness in detecting faults. This chicken-and-egg situation is a significant problem in
applying FDD techniques: a model is necessary to validate data, but validated data is necessary to
construct a model.

In this paper, we propose to solve this problem by training an “aggregate” model using historical
data from a large number of identical or similar systems. Systems whose behaviour significantly
deviates from the aggregate behaviour are detected as anomalous. While we cannot ensure that all
systems work correctly, we assume that only a small part of them is faulty and that they are not affected
by the same fault. Therefore, the individual faults would have a small impact during training, and the
resulting model would be largely unaffected.

3. Consensus-Based Method for Anomaly Detection

The method proposed in this paper analyzes time-series from multiple similar systems.
Correct and anomalous conditions are defined based on the consensus from all the systems.

The main intuition of this method, illustrated in Figure 1, is to find sequences of events in
multiple, related time-series and group them in episodes, where each episode represents a qualitative
phenomenon. e.g., if CO2 level rises, then the ventilation flow rate should increase, due to the BMS
acting to maintain good air quality. Episodes are, therefore, a sequence of events belonging to a
group of time-series. A database of episodes is obtained from historical data from several groups
of time-series. Frequent episodes are assumed to happen during correct conditions, while rare or
unknown episodes are assumed to be symptoms of anomalous behaviour. Episodes are later computed
from real-time data and compared with the episodes in the database. When a large part of real-time
episodes corresponds to episodes rarely encountered in historical data, i.e., when the current behaviour
of the system is qualitatively different from its historical one, the system is flagged as anomalous.

The episode database can optionally be updated with new episodes computed from real-time
data. This would allow to track seasonal variations and, moreover, to apply the method on a newly
deployed system without using a separate training phase. In that case, the episodes database would
be gradually populated over time, and earlier results could be inaccurate.
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Figure 1. Overview of consensus-based FDD method. Events are computed for each time-series
from historical data. Episodes, i.e., sequences of events belonging to different time-series, are used to
construct a database containing the normal qualitative behaviour. At run-time, events and episodes are
computed from real-time data and compared with the database, and optionally added to the database.

In order to avoid the necessity of validated fault-free training data, consensus between multiple
similar systems can be exploited. Assuming that only a small part of the systems used in training are
faulty or exhibit anomalous behaviours, their episodes would be overwhelmed by the episodes of the
rest of the systems, as illustrated in Figure 2.

In order to obtain a consistent common behaviour, systems should be grouped by common
characteristics. e.g., multiple rooms could be divided by room type, but also by room location,
such as by floor number or building side, or by other characteristics. When a room shows anomalous
behaviour within its group, it could be due to faulty components, but also to incorrect or insufficient
grouping, as shown by Narayanaswamy et al. in Reference [9]. e.g., the only classroom on the top
floor might deviate from all other classrooms, which are on the ground floor, due to different thermal
loss. Multiple orthogonal characteristics should be used to avoid this possibility, such that systems
which are anomalous in several groups are effectively labeled as anomalous.

Identical systems Episodes database

Two faulty systems
out of twelve

Aggregate Behaviour

Figure 2. Effect of faulty systems in consensus-based methods. If a small number of systems using in
training are faulty, their contributions will be diluted among the ones by correctly operating systems.

Compared with a traditional approach of clustering based on model or statistical parameters,
such as mean or variance, using episodes allows to represents interactions between different
measurements over time. Such interactions, or lack thereof, can be qualitatively linked to physical
phenomena within the system, and are learnt from aggregate historical data. Moreover, when updating
the episodes database with episodes computed from real-time data, this method adapts to slow
seasonal variations in the system’s dynamics.

In the rest of this section, we describe the procedure for data preprocessing and preparation,
we define events and episodes, and, finally, we describe how to monitor multiple time-series to
detect anomalies.
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3.1. Data Preprocessing and Preparation

Time-series can be divided into two categories depending on the nature of the measured quantity.
Time-series with a large number of readings changing gradually over time, such as temperature or
CO2 level, are called continuous time-series. Time-series with values defined over a finite and small
domain, such as on/off, or a predetermined number of states, which are constant for long periods and
change value abruptly, are instead called discrete time-series.

In order to extract episodes from a group of time-series, it is first necessary to extract events
from each of them. An event is a qualitative local trend of a time-series. Events are defined and
extracted differently for continuous and discrete time-series, as illustrated in Figure 3 and described in
the following.

Continuous Signals
Original

Discrete Signals
Original

Smoothed

Important Points

Inc

Dec

Inc

Dec
Inc

Events

Inc

Dec

Inc

Dec
Inc

Dec

Events

Directly identify events

Figure 3. Extracting events from continuous and discrete time-series. Continuous time-series often
present noise, therefore, they are first preprocessed with resampling, and smoothed using a lowpass
filter. Important points are found in the preprocessed time-series, and events are identified from them.
Discrete time-series, instead, are not affected by noise and events can be identified directly.
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3.1.1. Events for Continuous Time-Series

The following method, based on the one presented by de Pisón et al. in [19], is used to extract
events from continuous time-series.

Continuous time-series have many readings and are often subject to noise. In order to identify
the high-level trend without accounting for small deviations, the time-series are first filtered with
a lowpass filter. This operation is necessary to leave out low-order variations that do not impact
significantly the system under test.

The next step is to find important points in time-series, which are defined as follows. Consider a
time-series ai, where i ∈ Z is the time index, and ai is the value at time index i, e.g., temperature in
◦C or CO2 level in ppm. Consider a point am ∈ time-series and a window around it of radius n:
[am−n, . . . , am, . . . , am+n]. am is an important minimum if and only if

am = min [am−n, . . . , am+n] ,
ai
am
≥ r ∧ aj

am
≥ r ∀i, j : m− n ≤ i ≤ m ≤ j ≤ m + n,

(1)

where r 
 1 is a compression factor. The closer is r to 1, the more important points are found.
The precise value of r is a parameter that must be tuned for the specific experiment. Similarly, am is an
important maximum if and only if

am = max [am−n, . . . , am+n] ,
am
ai
≥ r ∧ am

aj
≥ r ∀i, j : m− n ≤ i ≤ m ≤ j ≤ m + n. (2)

Once important points have been computed, it is possible to extract events. An event is a transition
between two consecutive important points ak and a`. In this paper, we consider the following event
types: increment, decrement and horizontal trend. A transition is labeled as an increment if and only if

ak is an important minimum
a` is an important maximum
w1 ≤ `− k ≤ w2

h1 ≤ a` − ak ≤ h2,

(3)

where w1, w2 are constraints on the length of the transition and h1, h2 are constraints on the size of the
transition. The constraints w1, w2 are measured in number of samples or, equivalently, in length of
time intervals, when the time-series has a fixed sampling rate. The constraints h1, h2 are measured
in the same unit of the time-series values, e.g., ◦C for time-series recording temperature, or ppm for
time-series recording CO2 level. Similarly, a transition is labeled as a decrement if and only if

ak is an important maximum
a` is an important minimum
w1 ≤ `− k ≤ w2

h1 ≤ ak − a` ≤ h2.

(4)

A transition is labeled as a horizontal step if and only if

ak, a` are important points
w1 ≤ `− k ≤ w2

|ak − a`| ≤ h2.
(5)

3.1.2. Events for Discrete Time-Series

Extracting events from discrete time series is considerably simpler than from continuous ones.
Discrete time-series measure logical quantities and are not affected by noise, therefore, no filtering
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is necessary. Moreover, filtering a discrete time-series would result in a continuous time-series
transitioning smoothly from one state to the other, which would not significantly approximate the
original signal. Therefore, the filtering step is not performed for discrete time-series.

Since changes of values in discrete time-series represent a logical change in the measured quantity,
the values themselves are important points, and the changes themselves are events, as shown in
Figure 3.

3.2. Episodes Involving Multiple Time-Series

Episodes are ordered chains of events pertaining to multiple time-series, as shown in Figure 4.
They represent high-level cause-effect transitions, such as (Occupancy increases, CO2 level increases,
Ventilation increases), or (Ventilation increases, CO2 level decreases). Episodes can contain any number
of events but they are limited to a certain window size.

t

VAV
CO2 Inc

Inc
Dec

Dec
Inc Inc

Inc
Inc

Inc
Dec Dec

Dec

First Episode Second Episode

Figure 4. Episodes involving multiple time-series. Episodes are sequences of events and are represented
with green arrows. The first episode corresponds to a typical threshold-based VAV actuation: when CO2

level increases, the VAV unit opens, which in turns causes CO2 level to decrease after some time,
and thus the VAV unit to close. The second episode corresponds a more complex dynamics involving
the two time-series.

3.3. Monitoring Multiple Time-Series

The method consists of an initial training phase and an online detection phase (Figure 1).
During the training phase, historical data are divided into daily chunks, and episodes are extracted
from them and stored to a database. At the end of this phase, the majority of episodes in the database
will represent usual behaviour of the system. In the online detection phase, episodes are extracted
every day from data and compared to the ones in the database. All episodes that are absent in the
database, or have less than a given probability, e.g., 5 %, are flagged as anomalous. Therefore, when the
system behaviour matches the one recorded in the database, it is considered normal, otherwise, it is
considered anomalous.

A small number of anomalous episodes are expected even for healthy systems, therefore, a weekly
moving average of anomalous episodes is computed. When such moving average exceeds a threshold,
i.e., when anomalous episodes become common for a long period, the system as a whole is flagged
as anomalous.

The method described so far can be used if validated and fault-free historical data is available.
However, for many real-world systems, this might not be the case. If the system was faulty during the
training period, the database would contain episodes representing faulty behaviour, and the method
would flag such behaviour as correct during the online phase. This problem can be solved by exploiting
consensus among several identical or similar systems during the training phase. Assuming most
systems work correctly and only a small part are affected by faults, the majority of episodes stored in
the database would, therefore, represent correct behaviour. Moreover, if faulty systems were affected
by different faults their impact on the whole database would be even more diluted, as illustrated in
Figure 2.

In order to account for slow-varying seasonal changes in the operation of the system, episodes
obtained during the detection phase could be added to the database, and older episodes could
be removed. In alternative, multiple databases could be created using historical data from
different periods.
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4. Case Study

In this paper we present Odense Undervisning Building 44 (OU44) as a case study. The building,
shown in Figure 5, is located at the main campus of University of Southern Denmark, in Odense.
It was built in 2015 and it is mainly used for teaching and office work. The building contains around
120 rooms of different types, as shown in Table 2, spread over three floors, and technical rooms located
in the basement.

Figure 5. Building OU44 at campus Odense, University of Southern Denmark.

Table 2. Room types in building OU44.

Room Type Count Room Type Count

Office 48 Classroom 19
Corridor 21 Study zone 8
Other 7 Stairway 6
Conference room 4 Atrium 4
Copy room 3 Auditorium 2
Kitchen 2

Data from the building are continuously recorded and stored in a database. Most rooms are
equipped with indoor conditions sensors, such as CO2 level, temperature, humidity and illuminance
intensity, and with other meters such as lights status, heating valves and VAV units position, occupancy
presence, blinds status and booking status. A selected number of rooms have separate plug load meters
and occupancy counting cameras. In total, more than 3500 time-series are recorded for room-level
measurements, and more than 1800 for the ventilation system.

The building’s ventilation system consists of four identical ventilation units, each of them serving
one corner of the building (north-east, south-east, south-west and north-west). They are designed
to maintain constant shafts pressures of 130 Pa and 40 Pa in the entire unit, while, at room level,
supply flow rates depend on the VAV unit position. When VAV units are open, the pressure difference
in the supply and extract shafts induce airflow in the room. The amount of open VAV units can
be used as an estimate of the airflow required to maintain a constant pressure in the shafts, as was
shown in Reference [20]. The airflow, in turns, is directly related to the energy consumption of the
ventilation unit.

The position of VAV units themselves is based on multiple thresholds on CO2 level: at 600 ppm
the VAV unit opens by 45 %, at 750 ppm it opens by 70 % and at 900 ppm it opens by 100 %. When CO2
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level decreases the thresholds are affected by hysteresis of 100 ppm. The ventilation system is used to
control room air quality, but also to provide natural cooling using outdoors air. As a result, VAV units
can be open due to temperature, even when CO2 level is low. Heating is provided by radiations,
however, inlet air is heated to a setpoint of 20 ◦C to 22 ◦C inside the ventilation units before entering
the supply shaft.

Monitoring VAV Units

The BMS opens and closes VAV units to maintain room air quality, which is measured by the CO2

level. When the VAV unit is working correctly, increasing its position results in higher ventilation,
which reduces the CO2 level in the room. It is difficult to accurately estimate the dependency between
CO2 level and VAV position. Previous attempts using regression models, such as the ones used in [9]
for temperature control, lead to unsatisfactory results, perhaps due to the coarseness of VAV position
with respect to CO2 level. However, episodes involving the two time-series can capture the qualitative
relation. Ventilation increasing due to cooling rarely occurs in Denmark, and only during summer
months. Often, this happens when many occupants are in the room, which results in faster increase
due to CO2 level. Therefore, VAV position is dominated by CO2 level, and the effect of temperature
is small.

Rooms in the building were divided into four groups according to their corresponding ventilation
unit. Events were extracted from two time-series, CO2 level and VAV position ratio. Each group was
used to train and generate a database of episodes. Under the assumption that rooms sharing the same
ventilation unit have similar behaviour, the episodes are consistent within the group, and the resulting
database contains similar episodes.

On the other hand, each ventilation unit serves different types of room, such as offices or
classrooms. If a room type is underrepresented in the ventilation unit, the behaviour of such rooms
might seem anomalous with respect to its peers. However, it would not be due to a fault, but instead
to the room’s different shape and usage. To avoid this possibility of false positives, another experiment
was performed by grouping rooms according to their type, as shown in Table 2.

Therefore, the groupings in the two experiments were defined as it follows.

(a) Grouping by ventilation unit: the database was populated with episodes from all rooms belonging
to the same ventilation unit. All four ventilation units 1 to 4 were considered.

(b) Grouping by room type: the database was populated with episodes from all rooms of the same
type. Six room types were considered: classroom, office, corridor, study zone, auditorium and
conference room.

For both experiments, all parameters were set to the same values. Two time-series were considered:
CO2 level in the room and VAV position. The database was constructed dynamically, i.e., it was initially
empty, and, every day, it was updated with episodes obtained during the online detection phase,
and infrequent episodes were recorded. The experiment was performed on data from 20 November
2016 to 27 May 2017. Summer months were excluded, therefore, VAV position was independent of
room temperature. Original data was resampled to 5 min and filtered with a Butterworth low-pass
filter with cutoff period of 1 h, as outlined in the step “Smoothed” in Figure 3. This type filter was
chosen because its monotonously decreasing magnitude, which is flat in passband, does not distort the
original signal [21,22]. The moving window size for episode search was set to 2 h, and its step size was
set to 10 min The minimal frequency ratio for anomalous episodes was set to 5 %. Events were obtained
using the following parameters. Transitions length constraints (w1 and w2 in Equations (3)–(5)) were
set to 15 min and 120 min. Transitions size constraints (h1 and h2 in Equations (3)–(5)) were set to
20 ppm and 30,000 ppm.

Table 3 shows the most frequent episodes in database for ventilation unit 1. Some episodes
represent obvious qualitative behaviour of the ventilation system. e.g., ventilation is turned on for a
while, then it is turned off, and CO2 level decreases as a result (episode 10).
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Table 3. Most frequent episodes in database for ventilation unit 1.

Rank Episode Count

1 Ventilation↘, CO2 ↘ 257
2 Ventilation↗, CO2 ↘ 252
3 Ventilation↘, CO2 ↘, CO2 ↗ 225
4 CO2 ↗, Ventilation↘ 223
5 CO2 ↗, Ventilation↘, CO2 ↘ 222
6 Ventilation↗, CO2 ↗ 219
7 CO2 ↘, Ventilation↗, CO2 ↗ 210
8 CO2 ↘, Ventilation↗ 203
9 Ventilation↗, CO2 ↗, Ventilation↘, CO2 ↘ 169

10 Ventilation↗, Ventilation↘, CO2 ↘ 160

Figures 6–9 show the weekly moving average of anomalous episodes for VAV units in rooms
served by ventilation units 1 to 4. The rooms with the largest moving average are plotted separately in
the first plots. Table 4 summarizes the results of the two experiments: the same rooms were found
anomalous whether they were grouped by ventilation unit, or by room type.

Table 4. Room flagged as anomalous in both experiments conducted.

Room type Ventilation Unit
Unit 1 Unit 2 Unit 3 Unit 4

Classroom Ø22-601b-0 Ø20-601b-0, Ø20-601b-2 Ø20-511-1, Ø20-511-2
Auditorium Ø22-601b-1 Ø22-511-1
Conference room Ø21-606-1
Office
Study area
Corridor

Figure 6 shows the results for the VAV units in rooms served by ventilation unit 1. The first two
rooms, shown separately in the upper plots, have significantly more frequent anomalous episodes,
i.e., episodes in these rooms differs more frequently from the episodes commons to all other rooms.
Their moving average goes above 15 or it is often above 10, while for all other rooms it is consistently
lower, i.e., they behave more similarly among each other.
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Figure 6. Moving average of deviations for ventilation unit 1. In the first two plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last two plots.

Figure 7 shows the results for the VAV units in rooms served by ventilation unit 2. The moving
average for the first two rooms is very large, it goes over 15 and it is often over 10. While never
reaching 15, the moving average for the third room is also sometimes larger than 10, while all other
rooms have lower values.
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Figure 7. Moving average of deviations for ventilation unit 2. In the first three plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last plot.

Figure 8 shows the results for the VAV units in rooms served by ventilation unit 3. In this case,
only one room has moving average larger than 10, while all the others have lower values.
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Figure 8. Moving average of deviations for ventilation unit 3. In the first plot, the room which
frequently deviate from the common behaviour is shown separately. The rest of the rooms are shown
together in the second plot.

Figure 9 shows the results for the VAV units in rooms served by ventilation unit 4. The moving
average for the first two rooms is very large, it goes over 15 and it is often over 10. All other rooms
have lower values.
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Figure 9. Moving average of deviations for ventilation unit 4. In the first two plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last two plots.
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Figure 10 shows the results for the VAV units in classrooms. The five rooms which have the moving
average over 10 are also the same that were found anomalous in the first experiment, when rooms
were grouped by ventilation unit.
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Figure 10. Moving average of deviations for classrooms. In the first five plots, the rooms which
frequently deviate from the common behaviour are shown separately. The rest of the rooms are shown
together in the last plot.

Table 4 summarizes the results of the two experiments. The same rooms were found anomalous
whether they were grouped by ventilation unit or by room type, i.e., those rooms had a different
behaviour compared to other rooms served by the same ventilation unit, and compared to other
rooms of the same type. The anomalous rooms are 5 classrooms, two auditoriums and one conference
room. Since the building contains only one auditorium and 4 conference rooms, the episode database,
when grouping by room type, would contain episodes only for small amount of rooms. Therefore,
the sample size is too small to conclude that the rooms have actually anomalous behaviour. Classrooms,
however, are numerous in the building, and both experiments independently flagged the same rooms
as anomalous.

Figure 11 shows the values of CO2 level and VAV position for room Ø21-606-1 on a day without
anomalous episodes. Ventilation in the room follows CO2 level as expected. The VAV unit opens
by, respectively, 45 ppm, 70 ppm and 100 ppm when CO2 level rises above 600 ppm, 750 ppm and
900 ppm. The VAV unit closes with some delay after the CO2 level drops below the thresholds, due to
hysteresis of 100 ppm.

Figure 12 shows the values of CO2 and VAV position for the same room on an anomalous day.
CO2 level is low during most of the day, and it only rises few times above the first thresholds of
600 ppm. The VAV unit, however, always opens completely. High room temperature could cause
ventilation to increase to provide natural cooling through outdoors air. However, room temperature
never exceeds 24 ◦C during the day.
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Figure 11. Correct behaviour of room ventilation. The VAV unit opens at the expected levels when
CO2 level rises over the thresholds.
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Figure 12. Anomalous behaviour of room ventilation. CO2 level is below the threshold during the day,
but the VAV unit is often completely open. Room temperature is steadily below 24 ◦C during the day,
therefore, it cannot cause ventilation to increase.

Finally, the moving average of deviations from common behaviour has an irregular trend.
Some rooms, however, have a higher deviation at the beginning of the experiment, and, later,
align themselves more to the other rooms. e.g., room Ø20-511-2, when clustering by ventilation
unit and room type (Figures 9 and 10), or room Ø20-601b-2, when clustering by ventilation unit
and room type (Figures 7 and 10). This might suggest that, during the first few weeks, the episodes
database was not yet fully populated, and deviations during that period should be ignored.

5. Conclusions

In this paper, we presented a data-driven method for anomaly detection for VAV units based on
consensus among several peers. A database of episodes is created from historical data and used to
compute the frequency of new episodes. Compared to the majority of data-driven methods in the
literature, the method does not need fault-free training data, instead, it relies on a large number of
identical or similar systems. The effect of faulty systems during training is diluted over the entire
dataset and, therefore, has a small impact on the generated model.

We applied the proposed method to detect anomalous VAV units of an existing building using
CO2 level and VAV position. Each room in the building contains a VAV unit, and all units are identical.
We designed two experiments to investigate the behaviour of VAV units. At first, we grouped rooms by
ventilation unit. Rooms served by the same ventilation unit are assumed to have the same behaviour,
however, this assumption might not hold if their shape and usage are significantly different, and it
is possible that they are incorrectly flagged as anomalous. Therefore, we ruled out this possibility
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by running a second experiment where we grouped the rooms by room type. The two experiments
identified the same anomalous rooms, which suggests that their behaviour was, indeed, anomalous.

Some BMSs provide basic FDD capabilities, most often based on simple thresholds-based tests.
Some faults at room level can be detected with these tests, e.g., a VAV unit stuck closed will eventually
cause CO2 level to rise above the threshold, however, they are not able to model complex dynamics.
Episodes, on the other hand, can model interactions between different measurements, such as CO2

level and VAV units positions, and, by using consensus, the proposed method can assess whether such
interactions are similar to ones observed in their peers.

Consensus-based FDD methods are rarely applied in buildings systems. The proposed method
is used to detect anomalies among interaction between VAV units and CO2 level in the room.
This approach shows the usefulness of using consensus between multiple similar systems to remove the
need for fault-free historical data. Additional work would be necessary to decide whether anomalies
are due to faults, misconfiguration or other causes, and, furthermore, to precisely diagnose such faults.
The proposed method exposes several parameters, such as factor r, windows sizes, and thresholds
for anomaly detection. In the experiments they were manually tuned to obtain a reasonable set of
episodes, however, for a systematic application a method for self-tuning those parameters should
be investigated.

The proposed method relies on the availability of many identical or similar components, and it
can also be applied to other systems in buildings, such as heating, by monitoring episodes between
radiators and room temperature, or lighting, by monitoring episodes between lights switches and
illuminance sensors. More than two time-series can be used for phenomena that influence each other,
such as CO2 level, ventilation, temperature and heating, in order to generate more complex episodes.

Finally, the method presented in this paper was designed in the context of a complete framework
for FDD and energy performance monitoring in buildings systems, aiming at developing a continuous
monitoring application [23]. In our previous work, we addressed issues at different levels in buildings
systems. Validation of sensors data through a basic set of rules and tests allows us to trust the status of
the building, which is the basis for every advanced method using building’s data, and which is not
always validated after construction [8]. By monitoring the whole building energy performance with a
dynamic energy model, we can assess whether the building respects national regulations and attains
its design goals, or if it suffers from unjustified increased energy consumption, and at which level [24].
When one of the building systems does not perform as expected, we can analyse its individual
components to detect anomalous behaviour or deviations from past trends [20,25]. The method
presented in this paper fills another area by isolating anomalous systems among multiple peers
and, therefore, is another step towards a comprehensive FDD and energy performance monitoring
framework for buildings.
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AHU air handling unit
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OU44 Odense Undervisning Building 44
VAV variable air volume
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