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Abstract

The aim of this paper is to present the implementa-
tion and performance of an MPC framework based
on a multi-objective genetic algorithm. The frame-
work optimizes building control by firstly identifying
the Pareto frontier with respect to multiple objectives
considered, and then selecting the final strategy based
on the user-defined priorities for the respective objec-
tives. Although the approach requires more comput-
ing resources than the more traditional constrained
convex optimization, it is more flexible in terms of
the optimization problem formulation. New objec-
tives can be easily added, and the objective priorities
altered during the operation of the system. This flex-
ibility makes the framework attractive for global opti-
mization of multiple systems, including systems based
on on/off control. The framework is compatible with
the Functional Mock-Up Interface and uses models
exported to Functional Mock-Up Units. The frame-
work performance is tested in a virtual experimental
testbed using a building modeled in EnergyPlus.

Introduction

The building sector is responsible for approximately
40% of the energy consumption in U.S. and Euro-
pean Union (Cao et al. (2016)). In the residential
and commercial buildings, approximately half of the
energy is consumed by the heating and cooling sys-
tems (D&R International (2012)). These facts lead to
ongoing efforts across the world to manage resources
in buildings in a more efficient manner. One promis-
ing approach identified by researchers, is Model Pre-
dictive Control (MPC). MPC refers to a family of
control strategies in which there is a direct use of
physical modeling (Garcia et al. (1989)). MPC uses
model-based simulation to predict the effects of con-
trol strategies. This feature is especially attractive
for systems with high inertia, like buildings with high
thermal mass (Li and Malkawi (2016); Chen (2001)).
MPC can also enable demand side flexibility to build-
ings.

Contrary to MPC, the traditional control systems
(e.g. based on PID) are reactive in nature and their

function is limited to maintaining some set of desired
indoor environment parameters, expressed through
setpoints. In this approach, the building’s thermal
inertia is considered as a disturbing factor, having a
negative effect on the control performance. Hence,
traditional approaches are unable to take the advan-
tage of building dynamics and optimize for passive
heating and cooling that relies on building thermal
mass. However, this can be achieved with MPC.

MPC can be implemented in buildings on two differ-
ent levels: (1) low-level control of actuators, and (2)
high-level control of setpoints. The low-level MPC, as
in Karlsson and Hagentoft (2011), can potentially re-
place PID in controlling specific system components.
The high-level MPC, as in Huang et al. (2015b) or Li
and Malkawi (2016), is sometimes referred to as “su-
pervisory”, and can supplement Building Automation
Systems (BAS).

The models used in MPC fall into three broad cat-
egories: (1) white-box models, (2) grey-box models,
and (3) black-box models. In the white-box mod-
els the physical phenomena are captured explicitly
in model equations. An exemplary application of
white-box models (implemented using EnergyPlus) in
MPC was presented in Ascione et al. (2016), Coffer
et al. (2010), Kwak et al. (2015), and Kwak and Huh
(2016). The white-box approach is the most physi-
cally sound category, but also the one with the high-
est requirements to data about the building. The
amount of detailed data required by white-box mod-
els is one of the reasons why they are used mostly
in virtual case studies. The grey-box models capture
some basic physics, but some or all of the model pa-
rameters have to be estimated based on the measured
data. The most frequently used grey-box modeling
approach in MPC is the resistor-capacitor (RC) ther-
mal network, as in De Coninck and Helsen (2016),
Hazyuk et al. (2012), Hazyuk et al. (2014), and Maa-
soumy et al. (2014). Finally, the black-box models
are entirely data-driven (e.g. statistical and machine
learning models) as in Garnier et al. (2014, 2015) and
Huang et al. (2015a). Sometimes the grey- and black-
box models are combined, as in Huang et al. (2015b)
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(RC and neural networks combined). In actual build-
ings, especially the grey- and black-box approaches
are promising, since they can be generic and portable
between buildings.

Up to recently, the computational demand of models
and the technical complexity of the resulting cyber-
physical system were considered prohibitive for real
implementation of MPC. MPC adoption suffers also
from the difficulty to automate building model deriva-
tion and the lack of adequate data for real buildings.
The complexity of MPC is especially significant if all
building systems are to be controlled in a coordinated
manner. The difficulty of this overall approach lies
not only in the need for multi-domain modeling, but
also in the integration of all communication proto-
cols, many of which are proprietary (Ogunsola et al.
(2014)). Therefore, in the majority of studies the
MPC performance was tested on virtual buildings
(Ascione et al. (2016); Bianchini et al. (2016); Cof-
fey et al. (2010); Garnier et al. (2014, 2015); Li and
Malkawi (2016); Morosan et al. (2010); Chen (2001);
Hazyuk et al. (2012, 2014); Killian et al. (2016); Kwak
et al. (2015); Kwak and Huh (2016)). MPC has been
implemented only in a handful of real buildings so
far, e.g. De Coninck and Helsen (2016), Huang et al.
(2015b), Dong and Lam (2014).

In most of the MPC studies the optimization prob-
lem is described in terms of the minimization of a
cost function, which is defined as the weighted sum
of different objectives (Bianchini et al. (2016); Cof-
fey et al. (2010); De Coninck and Helsen (2016)).
The optimization problem is often solved using linear
programming (e.g. Schirrer et al. (2016)), nonlinear
programming (e.g. De Coninck and Helsen (2016)),
or meta-heuristic evolutionary algorithms, e.g. ge-
netic algorithms (e.g. Coffey et al. (2010)) or particle
swarm optimization (e.g. Li and Malkawi (2016)).

The actual energy saving potential depends on the
quality of the reference control strategy. In exam-
ple, the MPC system tested on a virtual building by
Garnier et al. (2015) was compared with five reference
non-predictive strategies and it was found that two of
them provided up to 20% lower energy consumption
than MPC, while three of them provided higher en-
ergy consumption (up to the factor of three). MPC
outperformed, however, the traditional strategies in
terms of thermal comfort. For reasonable reference
strategies, the MPC potential for saving energy has
frequently been reported to be below 30% (Huang
et al. (2015a); Li and Malkawi (2016); Morosan et al.
(2010); Chen (2001); Hazyuk et al. (2012); Zhao et al.
(2015)), based on virtual test cases. As for real build-
ings, the cost savings due to implementation of MPC
were reported to be around 34-40% (De Coninck and
Helsen (2016)), 18-30% (Dong and Lam (2014)), and
13% (Huang et al. (2015b)). Huang et al. (2015b),
however, stated that higher cost savings could be pos-
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Figure 1: Virtual test framework.

sible if a detailed occupancy profile prediction was
available.

Summarily, the conclusion from the presented litera-
ture review is that MPC has the potential to decrease
building energy consumption, but it is technically dif-
ficult to implement due to the highly multi-domain,
multi-disciplinary, comprehensive approach needed.
In addition, typically the MPC systems deployed in
particular buildings are not easily portable to other
ones.

In this paper we present a new multi-objective MPC
framework which addresses some of the issues re-
ported in the above-mentioned studies. First, thanks
to the multi-objective optimization, there is no need
to normalize and lump many objectives into a single
cost function. Secondly, the framework uses generic
zone models based on the gray-box approach and au-
tomatic parameter estimation, making it easier to de-
ploy in a new building. Finally, due to the adoption of
the Functional Mock-up Interface (FMI) (Blochwitz
et al. (2011)), the framework is not tied to any par-
ticular modeling approach or software environment.
The performance of the framework is planned to be
conducted in both virtual and physical setups. This
paper presents the initial results of the virtual test
case.

Optimization framework

The optimization framework consists of the following
parts (Figure 1):
e Controleum — optimization toolbox (Sgrensen
and Jgrgensen (2017)),
o ModestPy — Functional Mock-up Unit parameter
estimation toolbox (Arendt et al. (2018)),
e simulation interface compliant with the Func-
tional Mock-up Interface,

e archiver with the sMAP interface (Dawson-
Haggerty et al. (2010)).

Controleum is a multi-objective genetic algorithm
(MOGA) that constructs a Pareto frontier with re-
spect to the considered objectives (Figure 2). Each
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O Full frontier
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1. Select LO frontier (subset of the full frontier)
2. Select LO+L1 frontier (subset of LO)
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4

5

. One or more policies left (equally optimal solutions)

Objective #2
Minimize CO, setpoint violation [ppm]
5
o
o

Objective #1:
Minimize thermal discomfort [Kh]

NOTE: No need to compare units of
objectives at different levels

Figure 2: Pareto frontier in the multi-objective genetic algorithm optimization.

individual in the population represents a specific con-
trol policy, e.g. specific heating and ventilation pro-
files, that is tested in simulation. The Pareto fron-
tier construction is iterative and based on the genetic
algorithm operations: selection, crossover, and mu-
tation. Whenever a new individual appears in the
evolution, with a better fitness with respect to at
least one of the objectives, it joins the Pareto fron-
tier. When one of the stopping criteria is met, the
evolution stops and the algorithm proceeds to the
second phase in which the final policy is selected.
There are two stopping criteria in use: (1) no im-
provement in the Pareto frontier for a defined num-
ber of generations, (2) maximum computational time
reached. According to the authors’ knowledge this
work is the first example of applying Controleum to
MPC in buildings. It is also one of very few examples
of applying MOGA to MPC in buildings in general.

The policy selection in the second phase is conducted
recursively. In each step i the subset of individuals op-
timal with respect to the priority level Li (Figure 2)
is selected. Each priority level can contain either one
or more objectives. In the case there are two or more
objectives at the same level, the objectives are nor-
malized in order to identify the optimal population
subset. However, no normalization is required for
priority levels with a single objective. Finally, after
traversing through all the levels, one or more equally
optimal policies are left, out of which one is selected
randomly.

The developed optimizer (MOGA) communicates
with the archiver through the sMAP interface
(Dawson-Haggerty et al. (2010)). sMAP allows for
a two-way communication with the building, i.e.
for reading measurements and setting new setpoints.
Therefore, SMAP provides a higher level of abstrac-

Figure 3: (a) Simplified test model limited to 7 zones,
(b) actual OU44 building.

tion and from the optimizer point of view, there is no
difference between communicating with an Energy-
Plus model (as in this work) or with a real building.

Due to the FMI-compatibility and the use of MOGA
the framework is essentially model independent. The
models can be implemented in any FMI-compliant
tool, and they can be non-linear, non-differentiable
or even non-continuous. In addition, since the opti-
mization is not based on a cost function, adding new
objectives is straightforward. The objectives do not
have to be normalized with respect to one another.
Therefore, Controleum is potentially more flexible
than MPC systems based on collocation (Magnusson
and Akesson (2015)) or shooting methods (Lazutkin
et al. (2014)). Such features might be especially rele-
vant for building systems, which are often non-linear
(e.g. HVAC) and non-continuous (e.g. on/off con-
trollers). On the other hand, MOGA is expected to be
more computationally demanding than the gradient-
based methods.

Experimental setup

The framework was tested on a virtual case study
building modeled in EnergyPlus (similarly to e.g. As-
cione et al. (2016) or Bianchini et al. (2016)). The
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Figure 4: Gray-box model of a zone based on the
R2C2 thermal network (Modelica).

virtual building is a downscaled version of the OU44
teaching building at the SDU Campus Odense (Fig-
ure 3). It has the same HVAC system type and the
building envelope construction as the actual build-
ing, but it is limited to just 7 thermal zones. The
thermal zones have a similar geometry as the class-
rooms in OU44. The building is equipped with a
hydronic heating loop and a mechanical ventilation
system with pre-heating and a heat exchanger unit.

Controleum uses 7 gray-box zone models to simulate
the effects of control policies on the thermal zones in
the building. The zone models are based on the RC
thermal network, and each zone model has the same
structure (Figure 4), but different parameters. The
models are implemented in Modelica (Elmqvist et al.
(1998)). The zone model parameters were estimated
by minimizing the error in indoor temperature and
CO2 compared to the EnergyPlus outputs using the
ModestPy toolbox (Arendt et al. (2018)).

The performance of the framework is compared with
the rule-based control (RBC) in a one-month long
simulation, based on the climate data for January
from Typical Meteorogical Year for Copenhagen. It
is assumed that the framework has control over the
room temperature setpoints (each room can have a
different setpoint) and has access to room occupancy
schedules. In the real applications the occupancy
schedules would be replaced with occupancy predic-
tions. The influence of the quality of the occupancy
predictions on the MPC performance is not consid-
ered in this study. Two scenarios are considered:

1. CTRL-EE - optimization of temperature set-
points to minimize energy consumption and main-
tain indoor thermal comfort,

2. CTRL-DK1 - optimization of temperature set-

points to minimize energy cost and maintain in-
door thermal comfort.

In both scenarios the maintenance of indoor thermal
comfort has the highest priority. In the RBC strat-
egy the temperature setpoints are scheduled to 20 °C
during weekdays between 5:00-16:00, and 15 °C oth-
erwise. The RBC strategy is implemented directly in
EnergyPlus. The occupancy schedules for the seven
zones were generated based on the reference schedule
for office buildings available in OpenStudio, with ad-
ditional time/value offsets, so that there are no two
same schedules in the building.

Results and discussion

Compared to the implemented RBC, the imple-
mented MPC used around 24-25% less energy for
heating (Table 1). Similar savings were achieved in
both scenarios, CTRL-DK1 and CTRL-EE.

Table 1: Total absolute and relative (to RBC) heating
energy consumption per scenarto.

Scenario | Qiot [kWh] | Qe [% of RBC]
CTRL-EE 4050.43 75.4
CTRL-DK1 4091.90 76.2

RBC 5368.66 100.0

Based on the indoor temperature profiles (Figures 5-
6) it can be concluded that most of the energy savings
were due to the demand driven heating, as opposed
to the fixed schedule-based behavior in the case of
RBC. The indoor temperature profiles in RBC were
repetitive and, in many periods, not reflecting the
actual occupancy, e.g. see large deviations between
RBC and CTRL-EE/CTRL-DK1 on January 4, zones
2-7 in Figure 5. In addition to the demand-driven
behavior, in most cases MPC was able to preheat
the zones before the actual occupancy occurred, with
some exceptions when it did not start the preheating
early enough, e.g. on January 4, zone 4 in Figure 5.
Finally, the positive spike in indoor temperature in
all zones around midnight January 4 (Figure 5) was
due to the negative energy price (Figure 8).

The similar monthly profiles of indoor temperature in
CTRL-EE and CTRL-DK1 (Figure 6) suggest that
the highest priority objective, i.e. the thermal com-
fort maintenance, dominated the solution.

Controleum MPC reduced the discomfort (measured
in Kh) by around 70% (Figure 7). The discomfort
metric used in the study was calculated as the prod-
uct of the temperature difference between the set-
point of 20 °C and the actual temperature and the
time in which the difference was observed. Only oc-
cupancy periods and only the negative temperature
differences were taken into account, i.e. when the
indoor temperature was lower than 20 °C. E.g. 1
Kh means that the temperature was below the set-
point by 1 degree during 1 h of occupancy. The ob-
tained discomfort metrics were 287.85, 42.18, 41.58
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Figure 5: Indoor temperature profiles within the first
five days of simulation. The areas shaded in gray
mark occupancy periods.

for RBC, CTRL-EE, CTRL-DK1, respectively. The
result depends on the chosen reference RBC sched-
ules, however the discomfort in RBC could be only
decreased at the cost of increased energy consump-
tion. We believe that the slightly lower discomfort in
CTRL-DK1 as compared to CTRL-EE is likely due to
the stochastic nature of the optimization algorithm.
Since Controleum had access to 100% accurate occu-
pancy “predictions”, it could theoretically minimize
the discomfort to 0 Kh. The fact that the discomfort
metric was non-zero indicate that either the solution
was suboptimal (e.g. due to the maximum CPU time
reached) or the final solution is a result of the inter-
play between different objectives. The suboptimality
of the solution is at least partially true as can be
seen in the case of zone 5, CTRL-EE, January 3 in
Figure 5, where the indoor temperature setpoint is
slightly above actually needed. The influence of the
objectives hierarchy and optimization settings should
be investigated further in the future.

The indoor heating profiles and the energy price dur-
ing a subperiod of the analyzed month can be com-

Indoor temperature across zones

-21.0

19.5

18.0

Temperature [° C]

15.0

Figure 6: One-month indoor temperature profiles
for the three considered scenarios (RBC, CTRL-EE,
CTRL-DK1). Each column represents a single zone
(scenario - zone number).

pared in Figure 8. As in the case of temperature,
CTRL-EE and CTRL-DK1 followed a similar trend
with one major exception on January 4 when the en-
ergy price was negative for a short period of time.
The controller in CTRL-DK1 decided to consume as
much energy as possible in that time, meaning that
the second priority objective came into play. How-
ever, for most of the time the price signal had no
influence on the solution. Possibly higher price varia-
tions or different objective hierarchy would be needed
to effectively optimize for the total energy cost in a
real application.

Contrary to the expectations the CTRL-DK1 yielded
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w
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Method

Figure 7: Indoor comfort violations for the three con-
sidered scenarios.
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Figure 9: Total energy cost per scenario.

slightly higher energy cost than CTRL-EE (Figure 9).
However, as argued before, this is likely due to the
stochastic nature of the optimization algorithm and
the dominant role of the highest priority objective of
the thermal comfort maintenance.

The presented results were computed using code that
was only partially parallelized, e.g. Pareto frontier
detection was performed on multiple cores. How-
ever, the main bottleneck with respect to the CPU
time was the simulation of the gray-box zone models,
which was performed on a single core. Due to the
nature of MOGA, the zone model simulations need
to be repeated thousands of times. In this setup
a maximum allowed optimization time per each 7h
optimization horizon was five minutes. After each
optimization, a one-minute time slot was used to
synchronize the measurements and control strategy
between Controleum and the virtual building. The
optimization was repeated every 1lh of the virtual
building’s time. In total, around 3 days of real time
were needed to perform a one-month emulation of the
MPC-controlled virtual building (for one scenario).
Although the computational requirements of Con-
troleum are considerable, they are feasible for imple-
mentation in real buildings. However, implementa-

tion in large buildings (with hundreds of zones) may
require parallelization of the zone model simulations.
In general, more investigations regarding the scala-
bility of the framework are required.

Conclusions

In this paper the results of the MPC framework
based on the multi-objective genetic algorithm are
compared with the traditional rule-based control im-
plemented in EnergyPlus. The initial results show
energy consumption reduction of around 25%. The
computational requirements of the framework are fea-
sible for real implementation, at least in medium-
sized buildings. However, there is a potential for fur-
ther parallelization of the code, possibly extending its
applicability to larger buildings.

The analysis conducted in this study was limited in
a number of ways. Most importantly, only two sce-
narios with respect to the chosen objectives were con-
sidered, both with the thermal comfort maintenance
as the highest priority, and with the minimization
of the energy consumption and minimization of the
energy cost as the second priority objective, respec-
tively. The minimal difference in results between both
scenarios suggest that the highest priority objective,
i.e. thermal comfort, dominated the solution. More
simulations are required in order to study the robust-
ness of the framework under various objective hierar-
chies.

In addition, although the achieved savings are sig-
nificant, it seems that they are mostly due to the
demand-driven heating and not due to the utilization
of the building dynamics, as commonly cited in MPC
papers. This may be due to either a low thermal iner-
tia of the studied building (it takes short time to heat
up) or due to the deficiency of the dynamic optimiza-
tion method. Again, more simulations are required
in order to investigate this behavior, possibly with
different levels of thermal mass in the building.
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