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Abstract—Buildings represent a significant portion of global
energy consumption. Ventilation units are one of the largest
components in buildings systems and are responsible for large
part of energy consumption.

Ventilation units are complex components, often customized
for the specific building. Their faults impact buildings’ energy
efficiency and occupancy comfort. In order to ensure their correct
operation, proper Fault Detection and Diagnostics methods must
be applied. Hardware redundancy, an effective approach to detect
faults, leads to increased costs and space requirements.

We propose to exploit physical relations inside the unit to
create virtual sensors from other sensors’ readings, introducing
redundancy in the system. We create linear regression models for
three sensors using other sensors related through physical laws
as inputs. We use two different measures to detect when a virtual
sensor deviates from the actual one: coefficient of determination
and acceptable range.

We test our method on a real building at the University of
Southern Denmark. Our method detects a fault in temperature
sensor, where its readings have an abnormal trend and fall outside
acceptable range for one day.

Index Terms—fault detection and diagnosis, virtual sensors,
HVAC, smart buildings

I. INTRODUCTION

In Europe, buildings account for 40 % of the total energy
used and 36 % of the total CO2 emissions [1]. In the United
States, the buildings’ sector accounted for about 41 % of
primary energy consumption in 2010, 44 % more than the
transportation sector and 36 % more than the industrial sector.
Total building primary energy consumption in 2009 was about
48 % higher than consumption in 1980, going from 1290 TW h
to 2784 TW h [2].

Modern buildings consist of different subsystems such
as Heating Ventilation and Air-Conditioning (HVAC) units,
lighting and heating. Each subsystem contains in turn several
components such as pumps, fans, ducts, sensors, lamps, wires
etc. monitored and managed by a Building Management System
(BMS). All these components are subject to faults, due to dam-
age, wearing over time, misconfiguration and communication
issues. Faults impact occupancy comfort, maintenance cost and
particularly energy efficiency. It is estimated that in 2009 just
13 of the most common faults were responsible for over $3.3
billions in energy loss [3].

HVAC load varies depending on building type and location,
but they are one of the heaviest subsystems and can make up
to 50 % of the total energy consumption and, therefore, faults
involving them cause large energy loss [4]. Research suggests
that between 20 % to 30 % energy saving could be achieved by
re-commissioning malfunctioning HVAC systems [5]. HVAC
systems are often customized for their specific building and,
therefore, lack quality system integration [6].

A. Problem statement

Building energy efficiency cannot be achieved without
Fault Detection and Diagnostics (FDD) methods applied to
ventilation units. Hardware redundancy is an effective approach
to high quality FDD, however, duplicating sensors and other
components inside every unit increases deployment and main-
tenance costs, necessary space and complexity. Commercial
ventilation units are rarely shipped with hardware redundancy.

In this paper we propose a mixed model-based and data-
driven technique to exploit spatial relations among different
components in ventilation units to create virtual sensors and
introduce redundancy in the system, which can be used to
detect and diagnose faults. For each considered sensor we train
a linear regression model to estimate it given other sensors in
the unit. This allows us to detect and diagnose faults that cause
actual and virtual sensors to deviate from each other. We apply
this technique to a real world building and report the results.

The rest of the paper is organized as follows. The state-
of-art is reviewed in Section II. The proposed technique is
introduced in Section III. Section IV presents the case study
and discusses results and implications. Finally, conclusions are
drawn in Section V.

II. STATE-OF-ART

A. Fault Detection and Diagnostics

Kim et al. present a comprehensive review of recent
FDD methods for building systems [7]. FDD methods are
categorized in three groups depending on the approach: data-
driven methods, model-based methods and rule-based methods.

In data-driven methods a black-box model of the system
under test is trained over historical data using techniques
such as artificial neural network or regression models. These



methods require no detailed knowledge of the system and can
be easily generalized. Historical labeled faulty and fault-free
data are necessary to improve fault detection and to perform
fault isolation and diagnostics.

In model-based methods a model of the system under test
is created from first principles. These techniques are often
accurate and can detect and diagnose unknown faults. Models
can become complex, and detailed knowledge of the physical
characteristics and relations of the system’s components is
required to create them.

In rules-based methods expert knowledge is used to design
a set of rules describing the system’s behaviour. No historical
data or detailed knowledge from the system are necessary.
Large rules sets are necessary to describe complex behaviours,
which lead to conflicts and maintenance effort.

Yu et al. present a review of FDD techniques for ventilation
units [6]. The authors focus on software redundancy techniques,
classifying them in model-based, data-driven and rules-based
categories as in general FDD methods, and define a list of
desirable characteristics: 1) Quick detection and diagnostics,
2) Isolability, 3) Robustness, 4) Novel identifiability, 5) Classi-
fication error estimate, 6) Adaptability, 7) Explanation facility,
8) Modeling requirements, 9) Storage and computational
requirements, 10) Multiple fault identifiability.

B. Virtual Sensors

Li et al. present a review of virtual sensing techniques in
the context of buildings systems [8]. Virtual sensors have been
successfully applied to other fields such as process control and
automotive for more than two decades, and their usage would be
advantageous in buildings systems. Virtual sensing techniques
are categorized according to three criteria. Measurement
characteristics, i. e., whether the sensors represents sensor at
steady state or during transients. Modeling method, i. e., model-
based or data driven, a similar characterization as general FDD
techniques. Application purposes, i. e., whether the sensors are
used for redundancy and FDD, or for monitoring additional
unknown quantities.

Li et al. propose a method for FDD in air conditioners
using features decoupling and virtual sensors. The authors
create virtual sensors for several quantities, such as compressor
power consumption, refrigerant flow, condenser exit pressure,
exit air humidity and evaporation temperature. Virtual sensor
performances are tested both at steady state and under transi-
ents [9].

Cugueró-Escofet et al. present an approach for sensors data
validation and reconstruction and apply it to urban water
distribution systems. Raw data undergoes several tests, from
low-level tests checking elementary properties of signals to
high-level tests exploiting spatial consistency between different
sensors [10].

Cotrufo et al. develop a virtual sensor modeling exhaust
airflow in ventilation units. Airflow sensors for exhaust duct
are rarely present in ventilation units due to initial cost. They
use energy balance equation to relate other sensors in the
system with the airflow and propose two different models.

While the local errors can be large, the authors show how the
cumulative residuals are small and, therefore, the virtual sensor
can be used to estimate daily averages [11].

Kusiak et al. propose data-driven models for virtual sensors
for room level indoor air conditions, i. e., temperature, CO2
level and relative humidity. The authors develop four data
mining techniques, including artificial neural networks, support
vector machines regression and Pace regression. The obtained
virtual sensors can be used for validation and calibration of
physical sensors [12].

Verbert et al. propose a multi-model FDD method for HVAC
systems that exploits components interdependencies. They
develop Bayesian networks for multiple operating modes, using
both actual and virtual sensors created from system knowledge
and historical data. The authors show how using virtual sensors
significantly improves FDD performance [13].

III. VIRTUAL SENSORS IN VENTILATION UNITS

A ventilation unit is an aggregate of several components,
integrated together to provide air exchange to the building. It
is important that every component works correctly, otherwise
performance of the unit will deteriorate, causing energy loss
and reducing comfort level in the building.

Since all components work together they exhibit common
patterns and shared phenomena. Even if there is no explicit
redundancy in the system, i. e., no duplicated sensor or meter,
many of the quantities in the unit are strongly correlated. In this
paper we propose to exploit these relations and create models
to predict a quantity from the surrounding ones, generating
a set of virtual sensors. Given actual sensors available in the
ventilation unit S1, S2, . . . , Sn, a virtual sensor S′i measuring
the same quantity of Si is created using a model f(·) that
takes other sensors as input, i. e.,

S′i = f(S)
S ( {S1, S2, . . . , Si−1, Si+1, . . . , Sn}.

For instance, consider a heating system where the following
quantities are measured with sensors or meters: initial temper-
ature T0, heater energy M and final temperature Tf . A virtual
sensor for final temperature could be created using a model of
initial temperature and heater energy T ′f = f(M,T0).

Different methods can be used to compute the value of
a virtual sensor. When detailed knowledge about the unit is
available it is possible to use physical models, e. g., computing
airflow using fan speed and duct size and shape. Otherwise, it is
possible to train black box models using data-driven techniques.

A. Fault Diagnostics

When two sensors, either actual or virtual, deviate, the only
possible inference is that a fault is affecting one of them. In
order to diagnose the faulty one a third sensor is necessary.
Under the assumption of single simultaneous fault, when in a
group of three sensors one deviates from the other twos, the
former is identified as faulty.

Due to cost and space constraints, duplicated sensors are
rarely available in ventilation units, and even less so are



triplicated sensors. However, these constraints do not impact
virtual sensors, which can be created without cost using data
from other components. Some care is necessary when choosing
the inputs: different virtual sensors should share as few inputs
as possible, because a fault in an input impacts all its related
virtual sensors.

For instance, consider a heating system with two initial
temperature sensors T0, T1, a heater energy meter M and
a final temperature sensor Tf , where two additional virtual
sensors for final temperature were created as

T ′f = f(M,T0), T ′′f = f(M,T1).

Assuming a single fault scenario, if T ′f and T ′′f agree on their
readings and Tf deviates from them there are two possible
causes:
• Sensor Tf is faulty;
• Heater energy meter M is faulty.

This is due to the fact that heater energy meter M is used as
input in both virtual sensors T ′f and T ′′f , therefore, its fault
impacts both their output.

B. Measuring Deviations from Actual Sensors

In order to automatically detect a fault, a measure of
how much the virtual sensors deviate from the actual one is
necessary. Several tools are available from statistical analysis,
e. g., the maximal error or the norm of residuals. In this paper
we use the coefficient of determination, or R2 score, which
gives an estimate of how much a model fit the data [14]. An
R2 score close to 1 indicates that the model is a good fit
for the data, while values close to zero indicates the opposite.
Negative values indicate that the model predicts data worse
than a constant horizontal line.

We use the R2 score both to verify that the trained models
fit the testing data, i. e., that the designed model accurately
follows the actual sensor, and to validate real-time data from
the ventilation unit. For each period of interest, e. g., every
day, the R2 score for each virtual sensor against the actual
sensor is recorded. When the measure is lower than a given
threshold the pair virtual / actual sensors are flagged as faulty.

Another option for detecting deviations between actual and
virtual sensor is to make the latter output an acceptable range.
E. g., the predicted value plus the largest training error, or a
confidence interval based on another training error statistics.
When actual readings fall outside the acceptable range the two
sensors are flagged as faulty.

With both approaches, labeled faulty testing data would be
necessary to obtain accurate thresholds.

IV. CASE STUDY

A. Building OU44

In this paper we present Odense Undervisning Building
44 (OU44) as a case study [15]. It was built in 2015 at the
University of Southern Denmark, campus Odense, and it is
mainly used for teaching. It has three floors plus a basement
and it contains classrooms, study zones, offices and auditoriums.

It has four nearly identical ventilation units, each serving one
corner of the building, or roughly 20 thermal zones.

A ventilation unit consists in a large air loop, as shown
in Fig. 1. Inlet air enters the building, goes through a
heat-exchanger (HX), then is heated to appropriate indoor
temperature and pushed to the supply shaft, which is connected
by Variable Air Volumes (VAVs) units to individual rooms. In
the same way, exhaust air is collected from individual rooms
in the extract shaft, it goes through the heat-exchanger and it is
pushed outside. The heat-exchanger recovers heat from exhaust
air and transfers it to inlet air, reducing the energy required
by the heater. Air pressures in supply and extract shafts are
kept at constant values 130 Pa and 40 Pa, which cause air to
flow in the rooms. Two fans in the ventilation unit generate
the required airflows to maintain the pressure setpoints.

Several sensors, shown as arrows in Fig. 1 are available
inside ventilation units and heating loops: air temperature at
several positions, airflows trough the two fans, supply and
extract pressure, incoming and outgoing water temperature,
and water flow through the pump. In addition to that, several
meters measures the activity of fans and water pump: fan speed,
fan current and voltage, fan power and electrical consumption,
and pump electrical consumption.

Ventilation units are only working during working hours,
i. e., from Monday to Friday from 7am to 6pm in local time.
At any other time, at night and during the weekends, they are
shut down.

B. Results

Three sensors were considered for monitoring in a ventilation
unit: post-heat-exchanger temperature, airflow and fan speed.
For each of them two different models were constructed using
other sensors as inputs, as shown in Table I. Linear regression
models were used under the assumption that inputs and outputs
obey linear relations, at least locally [16]. Models were trained
over a week long historical data from Monday 13th March
2017 to Sunday 19th March 2017, and tested over two weeks
from Monday 27th March 2017 to Sunday 9th April 2017.

Another virtual sensor was also constructed, i. e., Effort,
which is proportional to an estimate of the power requested to
the ventilation unit and, therefore, to the airflow. By design fans
produce airflow to maintain constant shaft pressure, which in
turn depends on how many VAV units are open in the building.
Effort is an aggregate count of those units, which makes it
effectively a virtual sensor for an unknown quantity in the
ventilation unit.

For each sensor two models were used, in order to perform
fault diagnostics and not only fault detection. Table II shows
the R2 score of the models’ predictions over each day, which
measure how much actual and virtual sensors agree. Low R2

scores, indicating that models deviate from the actual sensors,
are highlighted in boldface.

For temperature two models are used, one exploiting know-
ledge about the heat-exchanger interactions (Model A), and
another one which relies on similar but less structured relations
between air temperature and heater (Model B). The former
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Figure 1. Diagram of a ventilation unit in building OU44. Inlet air enters the unit from bottom-left, passes through the heat-exchanger and through the heater,
before entering the main shaft and supplying individual rooms. From the rooms it enters again the main shaft, goes through the heat-exchanger to heat up inlet
air, and finally is pushed outside the building. Several sensors, shown by arrows, are available in the unit.

Table I
VIRTUAL SENSORS DEFINITIONS

Model Name Output Inputs

Model A post-HX temperature Inlet temperature, extract
temperature, airflow

Model B post-HX temperature Inlet temperature, water
flow, water loop temperature
difference

Model C Airflow Effort
Model D Airflow Fan speed
Model E Fan speed Airflow
Model F Fan speed Fan current, fan voltage

predicts temperature value much more accurately than the latter.
Table II shows that both models deviate significantly from the
actual sensor on 31st March 2017, and Model B deviates also
on 4th April 2017. Readings from the actual sensors are shown
in Fig. 2 with respect to the two models’ error ranges, which
corresponds to the predictions plus the maximal training error.

On 31st March 2017 the actual sensor’s readings oscillate
strongly, in contrast with the two virtual sensors which have a
smoother behaviour, and fall outside the models’ error ranges.
Since the two models share an input variable, i. e., inlet
temperature, this situation could be caused by a fault in the
actual post heat-exchanger temperature sensor or in the inlet
temperature sensor.

The situation on 4th April 2017 is less extreme. Model B
consistently overestimate the actual sensor’s readings, but the
overall trend is similar and, moreover, all the readings fall
inside the model’s error range. Therefore, this event could be
classified as a false alarm. Using a more accurate model instead
of Model B could reduce the frequency of false alarms.

For airflow two models are used, one using only effort
as input (Model C) and one using only fan speed as input

(Model D). Airflow and fan speed follow the fan laws and are
proportional to each other [17], and as expected predictions
for this model are nearly exact.

Model C is less accurate, and its R2 score on Tuesday 28th

March 2017 is very low, which suggests a fault in the virtual
sensor’s input, i. e., ventilation effort, since Model D agrees
with the actual sensor on the same day. Ventilation effort is
produced by aggregating several independent streams with
frequent periods of missing data, which can indeed cause the
model to deviate from the actual sensor. Moreover, ventilation
effort does not take into account the size of each room and
the corresponding VAV dampers, which reduces the model’s
accuracy. Readings from the actual sensors are shown Fig. 3
with respect to the two models’ error ranges, which corresponds
to the predictions plus the maximal training error.

For fan speed two models are used, one using airflow as
input (Model E) and one using fan current and voltage as
inputs (Model F). Fan speed is proportional to airflow due to
fan laws, and also to the fan power consumption, which in
turn depends on current and voltage. Both models predict the
actual sensor nearly exactly.

V. CONCLUSIONS

We proposed a technique to exploit relations between
physical quantities inside a ventilation unit to create virtual
sensors, introducing, therefore, redundancy, which can be used
to perform FDD. We applied our technique to ventilation units
in a real building, creating two virtual sensors for each of three
existing sensors: temperature, airflow and fan speed, using
linear regression models. We noted how on a particular day
both virtual sensors for temperature deviated from the actual
sensors, which suggests a fault has happened.

We used simple linear regression model to generate virtual
sensors and predict physical quantities based on other sensors.



Table II
PREDICTION R2 SCORE FOR VIRTUAL SENSORS

Temperature Airflow Fan Speed
Date Model A Model B Model C Model D Model E Model F

2017-03-27 0.955 0.782 0.371 0.987 0.988 0.997
2017-03-28 0.989 0.804 0.04 0.98 0.977 0.997
2017-03-29 0.839 0.217 0.368 0.992 0.992 0.995
2017-03-30 0.894 0.729 0.681 0.956 0.956 0.996
2017-03-31 −1.162 −1.995 0.572 0.852 0.908 0.996
2017-04-03 0.86 0.442 0.87 0.967 0.968 0.997
2017-04-04 0.886 −0.474 0.644 0.983 0.984 0.997
2017-04-05 0.774 0.57 0.8 0.944 0.953 0.996
2017-04-06 0.73 0.654 0.622 0.988 0.989 0.997
2017-04-07 0.802 0.537 0.772 0.904 0.932 0.996

18

20

22

Te
m

pe
ra

tu
re

[◦
C
] Sensor

Model A

18

20

22

Thu, 30 Mar

Te
m

pe
ra

tu
re

[◦
C
] Sensor

Model B

Fri, 31 Mar Mon, 03 Apr Tue, 04 Apr

Figure 2. Comparison between actual sensors and acceptable ranges obtained from model-based virtual sensors for post heat-exchanger temperature during
working hours (from 8am to 5pm) for selected days. The sensors readings fall inside the acceptable ranges except on Friday 31st March 2017, when they
deviate significantly. On Tuesday 4th April 2017 Model B consistently overestimates the actual sensors, but their trends are similar.

Some virtual sensors were accurate, but some others were
not. Better performance could be achieved by using more
advanced methods, such as artificial neural networks, statistical
machine learning algorithms or energy models of the ventilation
units [18]. Assuming to have a training period of fault-free
historical data it would also be possible to adopt methods from
time-series analysis, such as Auto Regressive Moving Average
with eXogenous variables (ARMAX) predictors, to create a
virtual sensor using its past actual sensor as input.

We highlighted how during one day the R2 score between
actual and virtual temperature sensors changed abruptly and
significantly and actual sensors’ readings fell outside the
acceptable range, which suggested a fault. However, a proper
threshold system must be set up to achieve automatic FDD.
This can be achieved by using expert knowledge and a training
set of labeled faulty historical data or by generating faulty data
using simulations. Moreover, the temperature sensor exhibited
faulty behaviour only for a single day during the first week,
while it appeared to work correctly in during the second one.

Therefore, a threshold system should also be used to decide
whether a significant but short-lived deviation is a fault.

Finally, we used regression models to predict data during a
period close to the one used for training, under the assumption
that the system’s behaviour did not change significantly. When
extending the prediction to other periods, this assumption might
not hold anymore, and seasonal variations must be taken into
account.
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