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Abstract—Often manually performed commissioning processes
on building’s sensors fail to systematically validate that all
building’s sensors operate correctly. This is so because manual
processes are tedious and only inspect a limited number of
sensors. As a result, sensors are often uncalibrated, biased or
somehow faulty, impacting building’s behaviour, comfort level
and energy usage.

We present a practical approach to automatically validate
data from all building’s sensors. We designed and implemented
four different tests to detect out-of-range values, spikes, latency
issues and non-monotonous values. Our tests are based on expert
knowledge and do not need historical data.

We ran the validation tests on a newly constructed building at
the campus of the University of Southern Denmark. As a result
we identified two types of faulty behaviours in the building’s
sensors: CO2 sensors reporting biased values and temperature
sensors’ readings exhibiting high latency.

We show how automatic data validation for building sensors
enhances the processes of detecting issues which could severely
impact building’s operations, and were otherwise going unnoticed.
Thus, we emphasize the importance of performing data validation
as a necessity for a correct building operation.

Index Terms—sensor data validation, fault detection and diag-
nosis, smart buildings

I. INTRODUCTION

In the past several years buildings have become more and
more intelligent [1]. Complex Building Management Systems
(BMSs), often, manage buildings in their entirety: ventilation,
heating, lighting, and other relevant subsystems. To operate, a
BMS requires access to the status of the corresponding building,
both at room level and at coarser levels. For instance, when the
CO2 concentration levels in a zone are too high, the ventilation
is turned on to improve the air quality. Similarly, when the
temperature in a room is below its setpoint, the heating is
turned on, and when a room has been empty for a certain
period, the lights are turned off.

The status of a building is sampled by an increasingly large
number and variety of sensors: CO2, temperature, air flow,
water flow, humidity, light intensity, occupancy, energy meters,
etc. If data collected from a building is incorrect, it would
impact the correct operation of the corresponding BMS. If a
BMS is fed low quality data, it would produce low quality
results. It is, therefore, important to perform data validation to
ensure that the quality meets the requirements.

Nevertheless, in many buildings no systematic validation is
performed before they are handed over to final users, even if
basic tests do not require complex setups. Facility management

personnel manually validate only a small subset of all sensors
and might assume that the data is correct and that the building’s
systems are operating correctly, as well as mistake data issues
with system issues. E. g., they might blame the BMS for not
handling heating correctly when it is the temperature sensors
that are producing lower values than real.

In this paper we propose a series of practical data validation
tests that can be automatically performed on new buildings,
regardless of how data is collected, and further customized.
We report the application and testing of this approach on a real
case study building. We, furthermore, discuss the identified
building’s issues and their implications on the building’s
operations and performance.

Most research papers on data validation make use of
simulated data [2, 3, 4, 5, 6, 7], real data with simulated
faults (e. g., by adding a fixed amount to model a biased
sensor) [8, 9, 10, 11, 12] or real data with artificially induced
faults (e. g., by manually blocking a valve) [13, 14]. In this
paper we document the testing of our proposed method on real
data from our case study building, through which we identified
significant faults. We informed the facility management team
about the discovered faults and they, subsequently, attended to
them. Furthermore, we adapted tests existing in literature to
threshold-based sensors.

The rest of the paper is organized as follows. The current
state-of-the-art is reviewed in Section II. The data validation
tests are introduced in Section III. Section IV presents the
case study and discusses results and implications. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

A. Data Validation: Overview and Classifications

Data validation belongs to the more general field of Fault
Detection and Diagnostics (FDD), on which depends successful
operation and performance of smart buildings [15]. FDD
methods analyze data from buildings to detect and identify
faults. The basis for any higher level FDD approach is correct
data, implying that data validation must be the very first step.

Erroneous data is caused by faults in the measuring processes,
when collected data points do not adequately represent the
measurements. On the other hand, data may appear faulty
while correctly representing a faulty system, and it is therefore
important to avoid misdetecting one for the other [10]. E. g., a



No historical data Historical data

Single streams [17, 18, 19, 2, 3, 20,
21, 12, 22, 13] [17, 18, 19, 23, 13]

Multiple streams [10] [17, 18, 8, 9, 11, 4, 14,
5, 6, 7]

Table I
RELATED WORK IN THE DIFFERENT GROUPS

too low temperature record can be caused by a biased sensor
or by a broken heating unit.

Similarly to one classification of FDD methods, data vali-
dation methods can be divided in three groups: model-based
methods, data-driven methods and rule-based methods [16].
Model-based methods use physical knowledge of the system to
produce estimate data points and compare them with measured
ones. Data-driven methods rely on fault-free historical data
which is used to learn a black-box model of the system. Rule-
based methods checks whether rules obtained through expert
knowledge hold for sampled sensors data.

Model-based methods need to be designed and tuned for
the system under test, therefore they are often too complex or
too expensive to set up. Data-driven methods are more flexible
and easier to adapt but require flawless historical data, which
is not always available. Methods based on expert knowledge
do not require neither detailed models nor historical data: they
are therefore suitable to be deployed on buildings during the
commissioning, when no data has been recorded yet or it has
not been validated, i. e., methods in this group are the initial
step to establish ground truths.

Another way to differentiate data validation methods is
whether they consider single or multiple data streams. Methods
in the first group are flexible and can be adapted to many kinds
of streams. Methods in the second group exploit correlations
between different streams and potentially allow validating com-
plex interactions, but they require either redundancy—sensors in
similar environments should report similar values—or historical
data—from which patterns are extracted and compared with
real time data.

Table I shows which of the reviewed methods belong to
each group. The method proposed in this paper belongs to the
upper left cell, it considers single data streams and assumes
no historical data is available.

B. State-of-the-Art

In the following we summarize the state-of-the-art of relevant
advances in data validation. We begin by a general overview,
followed by a focus on data-driven methods, and finally we
review the remaining significant approaches.

1) General Overview: Siao et al. present a literature review
on data validation methods. Simple tests include physical range
check based on sensor’s range; local realistic range, based on
sensor’s location and condition, possibly obtained through
statistical analysis; gaps detection; flat lines detection; gradient
test; tolerance band methods; and physical redundancy checks.
More complex tests include statistical analysis to detect outliers,

drift detection using exponential weighted moving average
methods, spatial consistency methods, analytical redundancy
(to check quantities correlated in a physical model), gross
error detection, multivariate statistical methods (e. g., Principal
Component Analysis (PCA)) and data mining techniques [24].

Pires et al. present a review and classification of data
validation methods used for mobile health applications. The
authors divide those methods in three groups: faulty data
detection methods, data correction methods, and other assisting
techniques or tools dealing with hardware errors [25].

Cugueró-Escofet et al. identify 6 levels of data validation
tests—communications, physical range, trend, equipment state,
spatial consistency and time series consistency—divided in low
and high level tests. Low level tests concern a single sensor,
while high level tests exploits correlation among different
sensors. The tests, obtained from expert knowledge, are applied
in sequence to incoming data which is scored accordingly. In
case one or more tests fail, a data reconstruction method is
used to produce valid data [19].

Branisavljević et al. consider an ordered sequence of
validation methods to be applied to data: detection of zero
values, detection of constant values, range check for physical
limits, range check for historical limits, statistical univariate
test, statistical multivariate tests, Artifical Neural Network
(ANN), non-linear models, SVM and physical model. Data
is augmented with contextual information (part of day and
weather conditions) and validation methods perform better
when tuned separately on each class [17].

2) Data-driven Methods: Castello et al. present two ap-
plications to handle data validation and correction and data
provenance for buildings. Provenance includes information
about the transformations through which data undergo (unit
conversion, resampling and filtering). The authors present three
experimental buildings as case studies [18].

Hou et al. propose a combined rough sets and ANN method
for detecting biases on HVAC chillers. Several rules are
defined to split data in subsets corresponding to different
operating conditions, and historical fault-free data is used to
train ANNs for each subset. The ANNs compute then an
estimate confidence interval for the bias [8].

Sharifi et al. propose a MPPCA model for non-linear sensor
faults detection. The input space is divided in few locally linear
regions and on each of them a PPCA model is trained. When a
new measurement is available, it is first mapped to the correct
region and then validated. A drawback of the proposed method
is that in case of large error it is difficult to obtain the correct
region and, therefore, to correctly isolate the fault [14].

Tsang et al. propose a method to validate sensor data using
polynomial predictive filter and fuzzy logic. Three sets of
fuzzy rules are considered: data is in range, data frequency is
in range, and data variance satisfies the F-ratio test. Polynomial
predictive filter is applied to historical data to obtain estimates
for the rules’ lower and upper bounds [13].

3) Model-based and Rule-based Methods: Tsang proposes
a gray model method for sensor data validation. The authors
consider three fault indicators: limit indicator, where a signal or
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Figure 1. Threshold-based sensors produce a new reading when the difference
from the previous value is larger than a threshold (1 ◦C).

its rate of change are out of prescribed bounds, jump indicator,
when there is a sudden change in the signal corresponding to
a spike, and noise indicator, when there is a change in the
predicted signal’s error [22].

Näsi et al. propose fuzzy limits centered on the signal’s
current mean to identify outliers within the range limits. The
authors compare distribution-based and density-based limits,
showing that the latter are less sensitive to non-evenly divided
values. Adaptive fuzzy limits contain a damping term based
on distance from the average, in order to prevent the outliers
to affect the limits [20, 21].

III. VALIDATION OF SENSORS AND METERS DATA

The methodology presented in this paper is mostly inspired
by the M1–M3 tests from [17], threshold-based tests from [18]
and level 0–2 tests from [19]. Implementations from these
papers were not available to deploy on our building. Moreover,
the mentioned approaches assumed sensors can be sampled
with constant frequency, which was not the case in our setup.
Therefore, we designed and implemented our own methodology.

Sensors perform measurements and make them available to
the BMS. We assume sensors to be threshold-based, i.e., to
continuously sense values and produce a new reading only
when the difference from the previous one is larger than a
threshold (see Figure 1). Rate-of-change tests, while popular
in literature [2, 3, 11, 20, 21, 12, 22, 13], are ineffective for
threshold-based sensors, since their rate-of-change is constant
(± the threshold).

We define the following terms:

• Value: the physical value sensed by a sensor;
• Reading: the act of receiving a value from a sensor;
• Record: a pair (t, v), denoting a reading at instant t with

reported value v;
• Sensor-threshold: difference between the current value

and the last record needed for a sensor to make a new
reading.

Figure 2 shows an overview of the data path in our system.
When a reading happens on a sensor, a record is stored on the
BMS. Over time a sensor produces a time series of records
[(t0, v0) , (t1, v1) , (t2, v2) , . . . ]. A driver is a program running
on the BMS which forwards readings to a centralized data
storage. Validation tests are performed on all incoming records
going to the data storage.

Sensor BMS Driver Storage

Validation

Figure 2. Data validation flowchart. Sensors push records to the BMS. A
driver collects records from the BMS and forwards it to a centralized data
storage, on which validation is performed.

A. Validation Tests

We implemented four different tests to validate records from
the building sensors: range, latency, spikes and monotonicity.
Each test can detect different issues (Table II).

1) Range test: Sensors from the building measure different
physical quantities, e. g., CO2 concentration level in the air,
light intensity in rooms, temperature of air in rooms or in
ventilation units or temperature of water in the heating system
and humidity in rooms. Most of these quantities should have
measure within a given range. E. g., in normal rooms CO2
concentration level cannot be lower than in atmosphere and
air temperature should be within comfort level range. Sensible
ranges can be obtained for many of the measured quantities
from expert knowledge, sensors data sheets and validated
historical data. Given upper and lower bounds vmin and vmax

the record (t, v) is labeled as erroneous if v � vmin∨v 
 vmax.
2) Latency test: For threshold-based sensors at any time the

uncertainty of a measure is twice the sensor-threshold. Long
periods without a reading can be caused by a decrease in sensor
accuracy, a sensor hard failure, communication problems or
BMS failure.

Given a maximal latency ∆tmax and two consecutive records
(t0, v0) and (t1, v1) the former record is labeled as erroneous if
t1 − t0 > ∆tmax. For this test it is not the records themselves
which are erroneous, but the interval between them. More
readings were expected between t0 and t1, therefore the record
(t0, v0) was labeled as erroneous, since it is not known until
when its value can be trusted.

3) Spikes test: A spike is a large variation in a very short
time window. Occasionally a driver may fail to parse a record
from the BMS, or the sensor itself can generate an erroneous
value. Typical examples are zero, negative numbers, or random
numbers. Sometimes spikes are invalid values (e. g., a negative
CO2 concentration level) which are easy to filter out, but they
can also be valid (e. g., temperature can be negative).

Issue \ Test Range Latency Spikes Monotonicity

Sensor bias X
Misplaced sensor X X

Driver fault X X X
Accuracy degradation X

Communication problem X X
Table II

ISSUES DETECTED BY EACH TEST



A naïve way to check for spikes is to check when the
difference between two consecutive records is above a given
threshold. This is however susceptible to false positives: for
instance, if the building’s communication network was down
for a short period of time the first record after it is back on
line might be significantly different from the previous one, but
this should not be considered a spike. Given the parameters δv
and δt and two consecutive records (t0, v0) and (t1, v1), the
latter record is labeled as a spike if

v1 − v0
t1 − t0

>
δv
δt
. (1)

4) Monotonicity test: Some meters, in particular energy
meters that record the total energy consumption, record an
incremental quantity. Such values are monotonically increasing,
as it is not possible to recover previously consumed energy,
and therefore every record value must be greater or equal to
the previous one. Given two consecutive records (t0, v0) and
(t1, v1) the latter record is labeled as erroneous if v1 � v0.

IV. CASE STUDY

In this paper we present Building OU44 as a case study. The
building is located on the campus of the University of Southern
Denmark. It contains classrooms, offices and study rooms, it
has been operating and collecting data since October 2015.

Every room has the following sensors:
• Temperature [◦C], relevant for heating and ventilation;
• CO2 [ppm], relevant for ventilation;
• PIR [boolean], room occupancy;
• Light [lx], relevant for automatic lighting control.

Some rooms have additional sensors or meters. For instance
some have separate meters for plug load or sensors for humidity.
Four rooms are equipped with occupancy counting cameras
that provide an estimate of people in the room. In addition to
that, the building has a weather station that records external
temperature, wind speed, rain and solar radiation. There are
also several energy meters: for heating, ventilation, hot water,
lighting, plug load, usually aggregate by floor or area.

All sensors are accessible through a KNX bus [26] and
broadcast records to the BMS according to their configuration.
Custom drivers fetch data from the BMS and publish it
to a centralized data base using Simple Measurement and
Actuation Profile (sMAP) protocol, so that it is available to
other applications, like occupancy prediction [27] and model
development and calibration [28].

Validation tests were executed on all the available rooms for
a number of selected sensors and meters. Table III shows
a summary of the tests and the sensors along with the
corresponding parameters. Details about number of streams
and average frequency are shown in Table IV.

A. Results

1) Results for CO2CO2 Sensors: Figure 3 shows spikes test
violations for CO2 concentration level for selected room and
period. Some spikes have value zero, which is impossible for
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Figure 3. Spikes test violations for CO2 concentration level
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Figure 4. Latency test violations for CO2 concentration level

CO2, while some other spikes have unusually large, but in
principle plausible, values.

Figure 4 shows latency test violations for CO2 concentration
level for a selected room and a time period. There are two
intervals with missing data due to a driver crash. The data
was, however, still available on the BMS, although not yet
forwarded to the storage.

Figure 5 shows range test violations for CO2 concentration
level for a selected room and a time period. Results for most
of the rooms in the building are similar to these. For the given
room, the CO2 sensor was reporting CO2 concentration levels
lower than the current atmospheric level. The CO2 sensors
have an accuracy of ±125 ppm, therefore, some violations
were expected when the CO2 concentration level was close to
the minimum. However, records were consistently below range
nearly all the time, sometimes for several days, which suggests
these sensors are faulty.

2) Results for Temperature Sensors: Figure 6 shows latency
test violations for temperature measurements for a selected
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Figure 5. Range test violations for CO2 concentration level



Test \ Sensor Temperature Humidity CO2 Energy Meter

Range 10 ◦C to 40 ◦C 0% to 100% 350ppm to 1200ppm
Latency 180min 20min 10min
Spikes 20 ◦C in 5min 5% in 10min 300ppm in 10min
Monotonicity Yes

Table III
IMPLEMENTED TESTS PARAMETERS

Temperature Humidity CO2 Energy Meter

Number of streams 140 10 231 88
Average frequency 30min 5 s 5min 1min

Table IV
NUMBER OF STREAMS AND AVERAGE FREQUENCY
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Figure 6. Latency test violations for temperature

room and time period. Even if the maximal latency was rather
large (180 min), there were many erroneous intervals. The
sensor-threshold in the sensor was set to 0.1 ◦C, so more
frequent readings were expected. However, most of the faults
occurred during the night, when the room was empty and
temperature should stay close to the setpoint. It is also possible
that boxes enclosing sensors isolate them too much from
the environment and they, therefore, shield them from high-
frequency variations.

Figure 7 shows range test violations for temperature for
selected room and period. For a short time during the night
the temperature dropped below the lower bound. Since this
was an isolated instance, it occurred during the night and the
temperature went back to the setpoint in the morning, it might
suggest that a window was left open during the night.

B. Implications and Discussion

After the CO2 sensors’ faults were detected, the supplier
replaced the sensors. The range test violations for CO2 after
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Figure 7. Range test violations for temperature
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Figure 8. Range test violations for CO2 concentration level after sensors were
replaced

the replacement are shown in Figure 8 (in the same room of
Figure 5). There were still few intervals below the minimum
range, but they happened when the CO2 concentration level
was close to the minimum, and they are therefore expected
due to the sensor accuracy (±125 ppm).

To summarize, running the tests on the building led us to
detecting two particular faults:

• many CO2 sensors were often below their minimal range,
• for some temperature sensors new readings occurred with

a very high latency.
Further investigation showed that CO2 sensors were biased,
mostly to a lower value. The BMS uses these records to
determine when to turn on ventilation, therefore, this fault
resulted in bad air quality in the building and lower ventilation
energy consumption.

Additional exploration helped in discovering that for some
temperature sensors (especially the ones in the weather station)
the sensor-threshold is too large, up to 1 ◦C, which means that
the accuracy of temperature is 2 ◦C and smaller variations are
not recorded. This configuration is probably due to constraints
on the KNX bus bandwidth, which supports a relatively small
number of simultaneously transmitting sensors. The effects of
decreasing the sensor-threshold need to be investigated.

V. CONCLUSIONS

We presented a sensor data validation approach that was
designed and developed driven by the real need of our research
project, aimed at improving smart buildings’ energy efficiency.
The data validation tests performed on the project’s case study
building exposed at least two faults: CO2 sensors "out of
range" and temperature sensors showing high latency. CO2
sensors bias impacted the ventilation system and other ongoing
research projects regarding model calibration and parameter
estimation on the building [29], and the issue was detected only



after few months. Temperature sensors’ high latency might
have impacted model calibration as well. If those tests had
being running earlier during the commissioning phase, a long
period of ventilation issues could have been avoided and bus
limitations could have been addressed.

This experience showed that validating sensors values in
new buildings is indeed an essential necessity for a correct
building operation. Expert knowledge based practical tests for
single streams are sufficient to expose issues with sensors and
meters that greatly affect building’s performance.

Automated testing of single streams is the first step in data
validation. Such tests, however, can only detect a subset of
faults and issues. Moreover, expert knowledge is necessary
to set the appropriate test parameters. Our future work in
this problem domain anticipates utilizing peer validation and
exploiting interactions between different data streams with more
advanced data validation methods. Once quality of historical
data is ensured, our focus will be on data-driven methods.

ACKNOWLEDGEMENT

This work is supported by the Innovation Fund Denmark
for the project COORDICY.

REFERENCES

[1] Bo Nørregaard Jørgensen, Mikkel Baun Kjærgaard, Sanja Lazarova-
molnar, Hamid Reza Shaker, and Christian T Veje. “Advancing Energy
Informatics to Enable Assessable Improvements of Energy Performance
in Buildings”. In: Proceedings of the 2015 ACM Sixth International
Conference on Future Energy Systems. Bangalore, India, 2015, pp. 77–
82.

[2] R Jeyanthi and K Anwamsha. “Fuzzy-based sensor validation for
a nonlinear bench- mark boiler under MPC”. English. In: 10th
International Conference on Intelligent Systems and Control (ISCO).
Coimbatore: IEEE, 2016, pp. 1–6.

[3] Nithya Kancherla and R. Jeyanthi. “Design of a generic Fuzzy-Based
Sensor Data Validation algorithm for a chemical process”. English. In:
International conference on Circuits, Controls and Communications
(CCUBE). Bengaluru: IEEE, 2013, pp. 1–6.

[4] Ihab Samy, Ian Postlethwaite, and Dawei Gu. “Neural network based
sensor validation scheme demonstrated on an unmanned air vehicle
(UAV) model”. In: 2008 47th IEEE Conference on Decision and Control
(2008), pp. 1237–1242.

[5] S W Wang and Y M Chen. “Sensor validation and reconstruction
for building central chilling systems based on principal component
analysis”. English. In: Energy Conversion and Management 45.5 (2004),
pp. 673–695.

[6] Shengwei Wang and Fu Xiao. “AHU sensor fault diagnosis using
principal component analysis method”. In: Energy and Buildings 36.2
(2004), pp. 147–160.

[7] S W Wang and J Y Qin. “Sensor fault detection and validation of VAV
terminals in air conditioning systems”. English. In: Energy Conversion
and Management 46.15-16 (2005), pp. 2482–2500.

[8] Zhijian Hou, Zhiwei Lian, Ye Yao, and Xinjian Yuan. “Data mining
based sensor fault diagnosis and validation for building air conditioning
system”. English. In: Energy Conversion and Management 47.15-16
(2006), pp. 2479–2490.

[9] MinJeong Kim, Hongbin Liu, Jeong Tai Kim, and ChangKyoo Yoo.
“Sensor fault identification and reconstruction of indoor air quality (IAQ)
data using a multivariate non-Gaussian model in underground building
space”. English. In: Energy and Buildings 66 (2013), pp. 384–394.

[10] Alexey Kozionov, Mikhail Kalinkin, Alexey Natekin, and Alexander
Loginov. “Wavelet-based sensor validation: Differentiating abrupt
sensor faults from system dynamics”. In: 2011 IEEE 7th International
Symposium on Intelligent Signal Processing (2011), pp. 1–5.

[11] J Kullaa. “Sensor validation using minimum mean square error
estimation”. English. In: Mechanical Systems and Signal Processing
24.5 (2010), pp. 1444–1457.

[12] Z G Shen and Q Wang. “Data Validation and Confidence of Self-
validating Multifunctional Sensor”. English. In: 2012 Ieee Sensors
Proceedings (2012), pp. 1045–1048.

[13] K M Tsang and W L Chan. “Data validation of intelligent sensor using
predictive filters and fuzzy logic”. English. In: Sensors and Actuators
a-Physical 159.2 (2010), pp. 149–156.

[14] R Sharifi and R Langari. “Nonlinear sensor fault diagnosis using mixture
of probabilistic PCA models”. English. In: Mechanical Systems and
Signal Processing 85 (2017), pp. 638–650.

[15] Sanja Lazarova-Molnar, Hamid Reza Shaker, Nader Mohamed, and
Bo Norregaard Jorgensen. “Fault detection and diagnosis for smart
buildings: State of the art, trends and challenges”. In: IEEE 3rd MEC
International Conference on Big Data and Smart City (ICBDSC 2016).
Muscat, Oman, 2016, pp. 1–7.

[16] Srinivas Katipamula and Michael Brambley. “Review Article: Methods
for Fault Detection, Diagnostics, and Prognostics for Building Systems-
A Review, Part I”. In: HVAC&R Research 11.1 (2005), pp. 3–25.
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proved real-time data anomaly detection using context classification”.
In: Journal of Hydroinformatics 13.3 (2011), p. 307.

[18] Charles C. Castello, Jibonananda Sanyal, Jeffrey Rossiter, Zachary
Hensley, and Joshua R. New. “Sensor data management, validation,
correction, and provenance for building technologies”. In: ASHRAE
Transactions 120 (2014), pp. 370–382.

[19] Miquel À. Cugueró-Escofet, Diego García, Joseba Quevedo, Vicenç
Puig, Santiago Espin, and Jaume Roquet. “A methodology and a
software tool for sensor data validation/reconstruction: Application to
the Catalonia regional water network”. English. In: Control Engineering
Practice 49 (2016), pp. 159–172.

[20] Jari Näsi and Aki Sorsa. On-line measurement validation through
confidence level based optimal estimation of a process variable. Tech.
rep. Oulu: University of Oulu, 2004.

[21] Jari Näsi, Aki Sorsa, and Kauko Leiviskä. “Sensor validation and outlier
detection using fuzzy limits”. English. In: 44th IEEE Conference on
Decision and Control, and the European Control Conference, CDC-ECC
’05. 2005, pp. 7828–7833.

[22] K M Tsang. “Sensor data validation using gray models”. English. In:
ISA Transactions 42.1 (2003), pp. 9–17.

[23] Hector Rodriguez, Vicenc Puig, Juan J Flores, and Rodrigo Lopez.
“Combined holt-winters and GA trained ANN approach for sensor
validation and reconstruction: Application to water demand flowmeters”.
In: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol).
IEEE, Sept. 2016, pp. 202–207.

[24] Sun Siao, Jean-LucBertrand Krajwewski, Anders Lynggaard-Jensen,
Joep Van den Broeke, Florian Edthofer, Maria do Ceu Almeida, Ribeiro
Alvaro Silva, and Jose Menaia. Literature review for data validation
methods. 2011.

[25] Ivan Miguel Pires, Nuno M. Garcia, Nuno Pombo, Francisco Flórez-
revuelta, and Natalia Díaz Rodríguez. “Validation Techniques for Sensor
Data in Mobile Health Applications”. English. In: Journal of Sensors
2016 (2016), pp. 1–9.

[26] KNX Association. What is KNX? 2017. URL: https://www.knx.org/knx-
en/knx/association/what-is-knx/ (visited on 01/25/2017).

[27] Sanja Lazarova-Molnar, Mikkel Baun Kjærgaard, Hamid Reza Shaker,
and Bo Nørregaard Jørgensen. “Commercial Buildings Energy Perfor-
mance within Context - Occupants in Spotlight”. In: Proceedings of the
4th International Conference on Smart Cities and Green ICT Systems.
Lisbon, Portugal: SCITEPRESS - Science, 2015, pp. 306–312.

[28] Muhyiddine Jradi, Christian Veje, and Bo Nørregaard Jørgensen.
“Towards Energy Efficient Office Buildings in Denmark : The Maersk
Building Case Study”. In: 29th International Conference on Efficiency,
Cost, Optimization, Simulation and Environmental Impact of Energy
Systems (ECOS2016). Portorož, Slovenia, 2016.

[29] Krzysztof Arendt, Ana Ionesi, Muhyiddine Jradi, Ashok Kumar Singh,
Mikkel Baun Kjærgaard, Christian T Veje, and Bo Nørregaard Jørgensen.
“A Building Model Framework for a Genetic Algorithm Multi-objective
Model Predictive Control”. In: CLIMA 2016 - proceedings of the 12th
REHVA World Congress. Aalborg, Denmark, 2016.


