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Abstract
Faults in buildings systems affect energy efficiency and occupancy comfort. Simulating building behavior
and comparing it with measured data allows to detect discrepancies due to faults. We propose a method-
ology to recursively compare actual data with dynamic energy simulations at different layers of aggrega-
tion to reduce the scope in searching for faults through the development the Online Energy Simulator, a
tool to set up automated simulations using standard interfaces usable with different building systems and
simulation engines. We test our simulator on a real building at the University of Southern Denmark,
showing how continuous monitoring allows to quickly detect and identify buildings faults.
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1 INTRODUCTION

Buildings are responsible for a large portion of energy consumption.
In the USA they accounted for 7% of primary energy consumption
in 2010, which is more than transportation and industrial sector.
Buildings energy consumption is also rapidly increasing over time,
doubling from 1290 TWh in 1980 to 2784 TWh in 2010 [1]. In
the European Union buildings account for 40% of the total energy
used and 36% of the total CO2 emissions [2]. Thus, the focus on
buildings is fundamental to achieve the energy efficiency and
environmental objectives, such as the European goal of saving
20% of primary energy consumption by 2020 compared to projec-
tions [3], and 30% by 2030 [4].

Modern buildings have complex control systems that moni-
tor the current status and manage heating, cooling, ventilation
and lighting. Each one of these subsystems has also increasing
complexity, and can, therefore, suffer from faults and malfunc-
tions. Faults can impact occupancy comfort, e.g. a broken radi-
ator would result in a cold room, but can also yield higher
energy consumption. It is estimated that in 2009 the most com-
mon faults in USA commercial buildings were responsible for
over $3.3 billion in energy waste [5].

Without a continuous monitoring of the building, faults can
happen and go undetected for a long time. Moreover, many

fault detection methods rely on detecting changes from previ-
ous behavior, and are, therefore, ineffective in detecting faults
present since the construction of the building. ‘Energy models’
of the buildings can be developed and used to assess that the
actual energy consumption follows the design goals by simulat-
ing the building’s behavior. ‘Static’ energy models are simpler
and require low computational power but assume steady-state
conditions and require simplifications. ‘Dynamic’ energy mod-
els are instead more complex both to develop and to simulate
but can accurately capture interactions between components
and changes over time.

In this article we propose a methodology for fault detection
and diagnostics (FDD) in buildings using energy models simu-
lations and comparing with real building at different aggrega-
tion layers. We present a software solution to automate
simulations without relying on any manual procedure. Our tool
uses industry standard interfaces to support different simula-
tion engines and automatic data retrieval from the building. We
then report the application and testing of our method and tool
on a real case study building.

Our tool was developed under the COORDICY Project, a stra-
tegic DK-US interdisciplinary research project for advancing ICT-
driven research and innovation in energy efficiency of public and
commercial buildings [6]. We use our tool to monitor the daily
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energy usage of our case study building at several aggregation
layers, such as whole building, by subsystem or by floor.

The rest of the article is organized as follows. The state-of-art
is reviewed in Section 2. The FDD methodology is introduced in
Section 3 and the Online Energy Simulator in Section 4. Section 5
presents the case study and discusses results and implications.
Finally, conclusions are drawn in Section 6.

2 STATE-OF-ART

2.1 FDD in buildings
Kim et al. present a comprehensive review of FDD for building
systems in recent years. FDD studies are classified using two dif-
ferent schemes: based on building equipment/size, such as large/
small buildings, Heating Ventilation and Air-Conditioning (HVAC)
systems, lighting, water heaters and ventilation units, and based
on method. FDD methods can be divided in history based and
qualitative or quantitative model based [7].

History-based methods rely on the availability of historical
data for a building. Such data is used to create black-box or
gray-box models, often using machine learning techniques
such as artificial neural networks, for the system under analysis.
Faults impact the system’s behavior so that it does no longer
match the model’s predictions. Historical-based models can be
used when little or no information about the physical system
under test is available and can in general represent complex inter-
actions. However, they require good quality fault-free training
data and can only make accurate predictions within its range.
Moreover, they are specific to the system used for training and
cannot easily be used on other ones.

Qualitative model-based methods rely on a priori knowledge
of the system under investigation. Such knowledge, provided by
documentation or expert knowledge, is used to create rule-based
or qualitative physical systems. Qualitative model-based methods
are simple to implement and can usually be validated by field
experts. They are also usually robust to numerical uncertainty in
input data. However, they often result in rigid models that cannot
be applied to different systems or easily extended.

Quantitative model-based methods rely on explicit mathemat-
ical models of system under investigation. Such models, which
accurately represent the system’s physical function, are used to
simulate the system’s expected behavior, which can be compared
with the actual one. Quantitative model-based methods provide
the most accurate results, and are usually able to simulate transi-
ents in dynamic systems, and even faulty behavior. However,
such models are often complex and are both difficult to develop
and computationally heavy. They also require validation and par-
ameter estimation with experimental data before their results can
be trusted, and cannot easily be used with different systems.

Methods from each category have different trade-offs and
are suitable for different kinds of systems. Hybrid approaches
that make use of multiple methods are also common, in order
to exploit advantages and reduce disadvantages of individual

methods. Using multiple methods also increases robustness and
reliability.

2.2 Building simulation
Many simulation engines are available for simulating buildings
energy performance, some explicitly oriented to this field, such
as EnergyPlus [8], some more generic, such as Modelica [9].

Clarke et al. describe the overall topic of building performance
simulation, its aims and achievements both at the present and in
the future. The authors analyze the current state-of-art for build-
ing performance simulation tools with respect to different aspects,
such as subsystems modeling, control, occupants representation,
computation time and economic considerations [10].

Costa et al. discuss the advantages brought by monitoring
buildings and comparing with energy performance simulations.
The authors describe some of the available visualization techni-
ques to display information obtained from building monitoring
in a way to facilitate FDD. They also describe how results from
monitoring can be used to improve model calibration and
operations optimization [11].

Maile et al. propose a new methodology to compare results
from simulations using energy models to actual measured data.
They consider the importance of multiple hierarchies, such as by
component and by location, which can be used to better evaluate
the results. An assessor should gather measurement and simula-
tion assumption, perform simulation and collect data, and finally
compare the results. All differences between simulated and mea-
sured data must be categorized in either: measurements problems,
simulation problems and operational problems. Not all differ-
ences are actually performance problems, some may be due to
measurement or simulation assumptions. Models should be itera-
tively adapted to reflect the actual building [12].

Wetter proposes a framework to connect several simulation
engines together using Ptolemy II modeling environment as middle-
ware to manage communication. The author defines an interface
for communication between the engines and implements it for sev-
eral engines such as EnergyPlus, Modelica, Matlab and Simulink.
The author tests his framework by performing a co-simulation
between EnergyPlus and Modelica, exploiting the advantages of
each engine in a particular domain [13].

Pang et al. present a framework for real-time simulation syn-
chronized with the actual building using the simulation engine
EnergyPlus. The simulation is managed using Ptolemy II actors
and a BACnet interface is used to exchange data with the
Building Management System (BMS). The authors proceed to
test their methodology on a real test bed and observe large differ-
ences between measures and simulated total energy consump-
tion. However, when looking at disaggregate plots it is possible
to figure out what are the causes. Difference of cooling energy
consumptions has similar peaks of difference of total energy con-
sumptions, and they are caused by mismatch in chilling strat-
egies between the model and the actual equipment. The same
was noted in the case of lights left on overnight [14].
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This framework supports only few selected simulation
engines and only BMSs that publish data over a BACnet inter-
face. In order to overcome these restrictions Pang et al. revise
their work and re-implement their framework by using Functional
Mock-up Interface (FMI), which is a standard interface supported
by many simulation engines. They also use the Simple Measure-
ment and Actuation Profile (sMAP) to exchange data, which is an
open protocol for data publication [15].

Sharmin et al. present a methodology for sensor-based moni-
toring of buildings and apply it to two residential buildings and
run data analysis on the results. The authors show how monitor-
ing reveals non-obvious information and insights about energy
consumption, e.g. heating loss was higher for units on middle
floors, which suggests the need for better insulation. The authors
also observe that users react by improving their energy usage
when introducing feedback from monitoring, but only short term.
Automated control is necessary to achieve long-term results [16].

With most engines, users must perform repetitive, time-
consuming and error-prone operations to setup and run a simu-
lation. First they have to fetch the input data, optionally preprocess
it, and convert it to the expected format (e.g. many engines expect
data at fixed intervals corresponding to the simulation step). Then
the model must be modified to point to the correct input data files.
Then the user must manually start the simulation. Finally, the user
can access the results usually from a CSV file.

Often simulation results are interesting for multiple users.
Either such users must each independently go through all the
mentioned steps, or one user usually shares the results by
‘unstructured’ ways, such as sending files by email. The for-
mer option multiplies the necessary time (and the potential
for errors), while the latter presents other problems, such as

misunderstandings with respect to successive versions of results
and possibly authorization issues.

Finally, models in quantitative model-based methods are
complex and strictly related to the equipment under test and,
therefore, are difficult to generalize and apply them with differ-
ent equipment. Different simulation engines are optimized for
certain systems and users need to learn the details of each of
them. Thus, it appears evident that a solution able to automate
simulations from different engines in a transparent way and
make real-time results easily available online to multiple users
is valuable.

3 METHODOLOGY FOR FDD IN BUILDINGS

Faults in buildings impact either occupants comfort or energy
consumption. We use a dynamic energy performance model to
simulate the building’s behavior and compute the expected
energy consumption. Thus, any deviation of the actual energy
consumption data compacted to the simulated results will high-
light faults and anomalies to be investigated.

Buildings record energy consumption at different layers. There
is a main meter for electricity that measures the entire building
consumption and sub-meters for every system, such as HVAC
and lighting. Some buildings also have individual sub-meters for
floors, other zones or other components. Separate energy distribu-
tion trees can be available for hot water and district heating sys-
tems, depending on the building. Figure 1 shows an example of
electrical energy distribution tree for a building. Sub-meters allow
to split the aggregate data from the main meter and to under-
stand how different systems use energy in the building in a more
clear and detailed manner. Building energy models are able to
provide results at different granularities, therefore, it is possible to
compare actual and simulated values for sub-meters.

In this study we develop and implement a top-down approach
for FDD as shown in Figure 2: when a deviation between actual
and simulated values is detected at the main meter, the next sub-
meters layer are compared to understand which system is affected

Electricity
Whole Building HVAC Ventilation Unit 1

Ventilation Unit 2

Ventilation Unit 3

Ventilation Unit 4

Misc Elevators

Lighting Basement

Ground Floor

First Floor

Parterre

Roof

Figure 1. Distribution tree in a building for electrical energy. The main
meter can be decomposed in HVAC and its ventilation units, and in lighting,
which can be in turn decomposed by floor, and miscellaneous.

Main MeterWhole Building

HVACSystem

Ventilation Unit 3Unit

Pump 3Component

Fault
Identification

Figure 2. Top-down approach in fault detection and diagnostics. Comparing
recursively different layers of the building’s distribution tree allows to reduce
the scope of faults.
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by the fault. This recursive investigation continues until reaching
the leaves of the energy distribution tree. At this point the smal-
lest unit or zone where the fault is located was identified. After
the scope was reduced, it is possible to use a more focused FDD
method to completely isolate the fault.

Let’s assume, for instance, that we have detected a higher
consumption of the building with respect to the district heating
distribution tree. Hot water coming from the district heating
pipes is used to heat up air in the ventilation units and water in
radiators. In our next step the simulated and actual values for
the respective sub-meters are compared. If the radiators are
found responsible for the deviation, the ventilation units are
then excluded from the investigation and labeled as not faulty.
Depending on the granularity of sub-meters, we could go dee-
per in the distribution tree and isolate the exact areas respon-
sible for higher energy consumption, and from there perform
specific FDD for radiators.

4 ONLINE ENERGY SIMULATOR

The Online Energy Simulator is a tool that

• fetches required data for the simulation (e.g. weather condi-
tions or occupancy count) from time series on the data
storage;

• maps such time series to a model’s input variables;
• runs the simulation for a specified number of steps/period of

time;
• collects results from model’s output variables; and
• posts results to the data storage.

All these operations are automated and the Online Energy
Simulator can be run without any manual intervention. The
high-level architecture is shown in Figure 3.

The Online Energy Simulator uses the Simple Measurement
and Actuation Profile (sMAP) for accessing building data, a proto-
col common for building systems [17]. The protocol supports read-
ing and writing time series. It also supports time series metadata in
form of key-value pairs. Metadata can be used to query the data

storage for the correct time series. The protocol is independent of
the underlying storage system. In order to add support for sMAP
to a system it is enough to develop a ‘driver’, i.e. an application
that forwards data from such system over sMAP.

In order to support different simulation engines, the Online
Energy Simulator uses the Functional Mock-up Interface (FMI).
FMI is an interface to perform model exchange and co-simulation
of dynamic models [18]. It allows to wrap an existing model in a
self-contained Functional Mock-up Unit (FMU) and to make it
available to other programs. A program can run simulations through
FMUs without any information about the actual simulation engine.

4.1 Configuration
FMUs expose input and output variable through the FMI. The
Online Energy Simulator uses a set of configuration files to
map such variables to time series. Input variables can be pro-
vided in three different ways.

• Explicitly: the variable’s value is constant over the whole
simulation period and set in the configuration file.

• From a CSV file.
• From a time series on sMAP, identified by its Universally

Unique IDentifier (UUID).

Basic arithmetic operations are also supported to allow unit
conversion. For each input variable the Online Energy
Simulator will either prepare a constant time series, load it
from the CSV file or fetch it from the data storage. Then it will
pass it to the FMU and start the simulation.

Output variables are mapped to sMAP time series by ‘source
name’, ‘path’ and ‘UUID’. The Online Energy Simulator also sup-
ports setting metadata of output time series, e.g. its unit or its
location. An example of mapping configuration is shown in
Listing 1.

Besides input/output mappings the Online Energy Simulator
reads from configuration files the path to FMU, simulation start/
end time, simulation step size and sMAP connection details.

The FMU and configuration files completely define the behav-
ior of the Online Energy Simulator. Therefore, it is simple to
replace the model when a new more accurate version is available,

Simulation

sMAP
(Data Storage)

FMU Simulator

FMU

Occupancy Data

Weather Data

Sensor Data

Setpoints Data

EnergyPlus

Modelica

Matlab

Figure 3. Architecture of Online Energy Simulator. All data are accessed through sMAP and the simulation engine is embedded in a FMU and operated
through FMI.
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or even to switch to a different simulation engine, as long as the
new one supports the FMI.

4.1.1 Batch and real-time simulations
Necessary input data for the whole simulation period must be
available at the beginning of simulation. This assumption holds
for simulations over historical data, but not for simulations
over present or future time, where data become available during
the simulation itself. A naive solution would be to divide the
simulation period in single iterations and run independent
simulations in sequence. For instance, the Online Energy
Simulator could simulate one day at the time over a week.
However, some engines such as EnergyPlus perform a certain
amount of initial ‘warm-up’ steps to compute initial values for
room temperature and other measurements. This would result
in discontinuities at the boundaries of each iteration.

To account for this use case, the Online Energy Simulator
supports a special kind of execution. The simulation period is
again divided in single iterations, but the Online Energy
Simulator stops at the end of each iteration and waits for user
input. Then it fetches input data only for the ‘next iteration per-
iod’ (with the exception of weather data), and runs the next
iteration. The warm-up phase is only performed at the begin-
ning of the first iteration, and all the measurements are con-
tinuous over the entire simulation period. User input for
iteration start is deterministic and, therefore, the user can be
replaced by another program.

4.2 EnergyPlus simulation engine
EnergyPlus is a whole building energy simulation tool devel-
oped by the US National Renewable Energy Laboratory [8]. It
is used to simulate the building’s behavior and energy con-
sumption over time, both at whole building level but also at
room and subsystem level. It can simulate large variety of build-
ings subsystems such as HVAC, water and hot water distribu-
tion and lighting.

The model describing the building is contained in a single
EnergyPlus Input File (IDF). This file contains information
about the whole building envelope, such as walls, pavements
and windows, their geometry, material and thermal properties,
and about the building subsystems such as ventilation units and

lights. The building is divided in independent thermal zones
that interact between each other over time.

EnergyPlus supports wrapping its models to FMUs and to
expose a machine-friendly interface usable by the Online
Energy Simulator [19].

4.2.1 Weather file update
Due to using the FMI the Online Energy Simulator is engine-
agnostic, i.e. it supports EnergyPlus models but also models from
other simulation engines, as long as they expose the correct inter-
face. There is one exception, however, because EnergyPlus has
limited support for weather data as input. Instead, weather data
must be provided in the form of an EnergyPlus Weather (EPW)
file, and it needs to be available at FMU ‘creation time’.

Since providing updated weather data at execution time is a
useful use case, the Online Energy Simulator supports this
EnergyPlus-specific feature. FMUs are in practice renamed ZIP
files containing the simulation engine (or a wrapper to call the
actual engine) in form of a shared library. FMUs created from
EnergyPlus contain also additional files, i.e. the model IDF file
and an EPW file.

When the Online Energy Simulator loads an FMU it decom-
presses its ZIP file, replaces the interesting columns of its EPW
file with weather data provided as input and re-compresses as a
new ZIP file. In this way it is possible to provide weather data
at the beginning of a simulation. Providing weather data as
input ‘during the simulation’, such as for occupancy data or set-
points, is not possible due to limitations of EnergyPlus engine.

5 CASE STUDY: BUILDING OU44

In this article we present Odense Undervisning Building 44 as
case study [20]. The building, shown in Figure 4, is located at
University of Southern Denmark, campus Odense and was built
in 2015. It has four floors and is mainly used for teaching and
it consists of classrooms, study rooms and offices. Regarding
the HVAC system, there are four ventilation units, each serving
one of the corners of the building. In addition, the building is
heated using a district heating loop and, partially, through the
ventilation system.

Every room has the following sensors:

• Temperature [celsius];
• CO [ppm];
• PIR [boolean]; and
• Light [lux].

Some rooms have additional sensors or meters. For instance
some have separate meters for plug load or sensors for humid-
ity. Four test rooms are equipped with occupancy counting
cameras that provide an estimate of people in the room. In add-
ition to that, the building has a weather station that records
outdoor temperature, wind speed, rain and solar radiation.
There are also several energy meters: for heating, ventilation,

# Input variables
CO2_Setpoint_Zone_1_UUID=12345678-abcd-...
Heating_Setpoint_Zone_1_VALUE=21
Cooling_Setpoint_Zone_1_CSV=cooling_1.csv

# Output variables
CO2_Level_Zone_1_PATH=/simulations/zone_1/co2
CO2_Level_Zone_1_Metadata/SourceName=Simulation
CO2_Level_Zone_1_Metadata/Unit=ppm
CO2_Level_Zone_1_Metadata/Room=Room 1
CO2_Level_Zone_1_Metadata/Floor=0

Listing 1. Example mapping configuration file.
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hot water, lighting, plug load, usually aggregate by floor or area.
Finally, occupancy counting cameras are also located at every
entrance of the building, providing an estimate of people in the
entire building.

All sensors are accessible through a KNX bus [21] and
broadcast records to the BMS according to their configuration.
All energy meters are accessible through an EnergyKey system.
Custom drivers fetch data from the BMS and EnergyKey system
and publish it to a centralized data storage using sMAP, so that
it is available to other applications, such as occupancy predic-
tion [22] and model development and calibration [23].

5.1 Monitoring building performance with Online
Energy Simulator
An overall dynamic energy performance model for the OU44
model was developed by Jradi et al. [20] considering various
building characteristics and specifications including physical
envelope, energy supply systems and operational parameters.
The building model is continuously re-calibrated within the
developed framework, considering a 3 months timeframe. The
model was prepared for export by exposing selected input/out-
put variables in the interface. This step is automated using the
EPQuery tool [24], which helps to modify EnergyPlus IDF files
using Python scripts. Employing the developed dynamic model,
the Online Energy Simulator was configured and deployed to
the case study building Odense Undervisning Building 44
(OU44) to monitor its energy performance. Once per day a
simulation is run over the previous 24 h providing the following
input data:

• Weather data from the local weather station: outdoor tem-
perature, wind speed and solar radiation.

• Whole building occupancy data, obtained from occupancy
counting cameras.

• Single room occupancy data for the four test rooms that
have occupancy counting cameras.

We focused on the four test rooms because having an estimate
of the occupants count helps understanding their dynamics.

These rooms also have additional room level energy meters and
higher resolution sensors.

The following output variables were collected at each simula-
tion step, i.e. 10 min, and posted to data storage:

• Whole building electrical energy consumption.
• Whole building heating energy consumption.
• Whole building lighting energy consumption.
• Electricity consumption for the four ventilation units.
• Room temperature for the four test rooms.
• CO level for the four test rooms.

An overall building occupancy profile was generated using input
from the different camera counts around the building [25]. The
model assumes that occupants spread uniformly over the entire
building. For the four test rooms, however, specific occupancy
count estimates are provided to improve simulation accuracy.

Once results are posted to data storage, they are available to
every other application. In particular, simulation results can be
compared with the actual measured values. This allows to
detect any deviation or differences between the actual and pre-
dicted performance of the building.

5.2 Results
In this section we show the results obtained by running the
Online Energy Simulator on OU44. We used an EnergyPlus
model and we ran simulations for 8 months from Thursday
1 September 2016 to Sunday 14 May 2017. We provided whole
building occupancy count, room level occupancy counts for four
test rooms, outdoor temperature, wind speed and solar radiation
as simulation input. We show charts for selected time periods.

5.2.1 Results for energy performance
Figure 5 shows the simulated and measured electrical energy
consumption over a week for building OU44. Cumulative
energy consumption over time is shown on the left column and
energy consumed every 2 h is shown on the right column. We
chose this value because some of the sub-meters have low time
resolution, which resulted in spikes using shorter values. The
last row shows the total occupants in the building, estimated
through the occupancy counting cameras.

Energy performance at the whole building level is on par
with the simulation results, with a small deviation toward the
end of the week. We consider the next sub-meters layer, i.e. the
ventilation system and lighting. The rest of energy consumption
is due to building operations, such as elevators and plugs load.
We observe two distinct phenomena: the ventilation system
performs consistently worse than the model, and energy con-
sumption for lighting deviates significantly during the weekend.

We can explain the anomaly for lighting by looking at occu-
pancy over time. During the weekend, occupants count drops but
the building is not completely empty. It is possible that a small
number of students come to study on weekends and spread to
different rooms. In this case the lights would be turned on for

Figure 4. Odense undervisning building 44 at University of Southern
Denmark, campus Odense.
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Figure 5. Data from energy meters and simulation results for building OU44. Cumulative energy consumption over time is shown on the left column, energy
consumed every 2 h on the right one. Total occupants in the buildings are shown on the last row.
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many rooms even with a small number of occupants, while the
model assumes a proportional lighting energy consumption.

We continue our investigation of the ventilation system and
examine the sub-meters in the next layer, i.e. at the individual
ventilation units. Unit 1 follows closely the simulation, but the
other three deviate. Units 2 and 4 consume less energy than
expected, while unit 3 consumes significantly more. There are
no more meters in the ventilation units, therefore, we cannot
further compare simulated and measured performance. We suc-
ceeded in reducing the scope to ventilation unit 3, which has a
large deviation from the expected performance and now we can
run specific FDD techniques to completely isolate the faulty
component. Further investigation should also be performed to
understand why ventilation units 2 and 4 have a lower energy
consumption than expected.

5.2.2 Results for indoor conditions
In addition to energy meters, we compared the room level
indoor conditions measured by building sensors with the ones
from the simulation.

Figure 6 shows the simulated and measured room tempera-
ture for one of the four test rooms. Although the dynamic
EnergyPlus model was calibrated based on the overall energy
consumption of the building, actual room indoor air tempera-
ture were found to be in line with the model predictions, with
the two values following the same trend. However, it is noticed
that room temperature measured by the building sensor quickly
drops during the night of Tuesday 4 April 2017, deviating from
the simulated value.

We can explain this anomaly by noticing that the indoor
temperature follows closely the outdoor temperature recorded
by the building’s weather station. The most likely cause was
that the room windows were left open during the night.

5.2.3 Computational load of simulations
In order to estimate the computational load of simulations we ran
the Online Energy Simulator over periods of different lengths and
recorded the elapsed time. The results are shown in Table I.
Simulating an entire day or even an entire month only takes few
minutes. The elapsed times are very similar even for very different
simulation periods because EnergyPlus spends long time during
the warm-up phase, which is the same for every simulation.

6 CONCLUSIONS

We proposed a method for FDD in building systems using dynamic
energy models to simulate the expected behavior of the building
and compare it with the actual one at different layers. We pre-
sented a tool for scheduling and automatically running simula-
tions without user interaction, using industry standard interfaces
to support many simulation engines and building systems. Finally,
we tested our method and tool on a real building, identifying
anomalies in energy consumption of lighting and ventilation units,
and in room temperature. As the tool was implemented for a short
time for validation in the case study building, the savings due to
the implementation were not evaluated, but major expected sav-
ings include less operational costs, higher maintenance process
response, lower energy consumption and higher thermal comfort.

Splitting energy consumption in sub-meters allowed us to
understand how different subsystems use energy inside our
building. We were able to follow the energy distribution tree
from its root to its leaves, ruling out branches where measured
values were on par with simulation results and exploring the
ones where the they deviate. We succeeded in identifying the
ventilation unit responsible for higher energy consumption and
gained insights about the lighting system.

We also showed how using an automated solution to sched-
ule simulations can reduce the risk for human errors. The
Online Energy Simulator developed and presented in this study
has been running automatically for several months in the OU44
building within the ‘ObepME Tool’, Online Building Energy
Performance Monitoring and Evaluation, for automatic and
continuous energy monitoring and evaluation of the overall
building energy performance aiming to reduce energy perform-
ance gaps and forming a backbone for FDD [26]. Thanks to a
configuration-based approach, we are able to easily upgrade
and calibrate the dynamic model to newer versions and repeat
simulations over any period with any functional changes.

6.1 Future work
The methodology proposed in this article covers the high-level
identification of a faulty subsystem, and represents an import-
ant intermediate block of a complete FDD solution for building
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Figure 6. Comparison between simulated and measured room temperature.
Temperature dropped sharply during one night, following the outdoor
temperature.

Table 1. Elapsed time for different simulation periods.

Simulation period Elapsed time

1 d 279 s
7 d 349 s
30 d 518 s
60 d 683 s
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systems. In order to perform a full FDD it is first necessary to
ensure validation of input data—which we previously approached
in [27]—and then to use specific methods to completely isolate
the faulty component inside the identified subsystem. Those
methods should exploit the characteristics of the considered sys-
tems, such as individual ventilation units or room lighting, to
reach the best FDD performance. Moreover, simulated and mea-
sured data are both available on our data storage for client appli-
cations, but they are not accessible in a user-friendly way. A
dashboard application would enable non-technical users to assess
the building status and performance.

Furthermore, we are extending the Online Energy Simulator
to play an important role as component of a new ‘virtual build-
ing’. The virtual building behaves as closely as possible to a real
building, also with respect to control input. It waits for new
actuation commands to be posted to our data storage and simu-
late the outcome. A BMS can then be deployed on the virtual
building making possible to test our control strategies before
deploying it on a real one.
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